487 results match your criteria: "Center for Nano Science and Technology[Affiliation]"

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation.

View Article and Find Full Text PDF
Article Synopsis
  • The combination of nanotechnology and photoredox medicine has produced biocompatible semiconducting polymer nanoparticles (SPNs) that can control reactive oxygen species (ROS) inside cells.
  • Researchers have created highly efficient photoactive polymer beads known as porous semiconducting polymer nanoparticles (PSPNs) through selective hydrolysis of a specific polymer blend (P3HT-PLA).
  • These new PSPNs significantly enhance photocurrent generation and effectively boost ROS levels in cells, making them suitable for long-term medical applications due to their low light density requirements.
View Article and Find Full Text PDF

Dual-Stimuli Regulation of DNAzyme Cleavage Reaction by Coordination-Driven Nanoprobes for Cancer Cell Imaging.

ACS Appl Mater Interfaces

June 2024

College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China.

Endowing current artificial chemical reactions (ACRs) with high specificity and intricate activation capabilities is crucial for expanding their applications in accurate bioimaging within living cells. However, most of the reported ACR-based evaluations relied on either single biomarker stimuli or dual activators without obvious biological relevance, still limiting their accuracy and fidelity. Herein, taking the metal-ion-dependent DNAzyme cleavage reaction as a model ACR, two regulators, glutathione (GSH) and telomerase (TE) activated DNAzyme cleavage reactions, were exploited for precise discrimination of cancerous cells from normal cells.

View Article and Find Full Text PDF

2D Hybrid Perovskites: From Static and Dynamic Structures to Potential Applications.

Adv Mater

July 2024

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices.

View Article and Find Full Text PDF

In the past years, an increasing number of experimental techniques have emerged to address the need to unveil the chemical, structural, and electronic properties of perovskite thin films with high vertical and lateral spatial resolutions. One of these is angle-resolved photoemission electron spectroscopy which can provide direct access to the electronic band structure of perovskites, with the aim of overcoming elusive and controversial information due to the complex data interpretation of purely optical spectroscopic techniques. This perspective looks at the information that can be gleaned from the direct measurement of the electronic band structure of single crystal perovskites and the challenges that remain to be overcame to extend this technique to heterogeneous polycrystalline metal halide perovskites.

View Article and Find Full Text PDF

Light-driven modulation of neuronal activity at high spatial-temporal resolution is becoming of high interest in neuroscience. In addition to optogenetics, nongenetic membrane-targeted nanomachines that alter the electrical state of the neuronal membranes are in demand. Here, we engineered and characterized a photoswitchable conjugated compound (BV-1) that spontaneously partitions into the neuronal membrane and undergoes a charge transfer upon light stimulation.

View Article and Find Full Text PDF

In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%.

View Article and Find Full Text PDF

We combine site-directed mutagenesis with picosecond time-resolved fluorescence and femtosecond transient absorption (TA) spectroscopies to identify excitation energy transfer (EET) processes between chlorophylls (Chls) and xanthophylls (Xant) in the minor antenna complex CP29 assembled inside nanodiscs, which result in quenching. When compared to WT CP29, a longer lifetime was observed in the A mutant, missing Chl a612, which closely interacts with Xant Lutein in site L1. Conversely, a shorter lifetime was obtained in the A mutant, in which the interaction between Chl a603 and Chl a609 is strengthened, shifting absorption to lower energy and enhancing Chl-Xant EET.

View Article and Find Full Text PDF

The capacitance of electrode materials used in electrochemical double-layer capacitors (EDLCs) is currently limited by several factors, including inaccessible isolated micropores in high-surface area carbons, the finite density of states resulting in a quantum capacitance in series to Helmholtz double-layer capacitance, and the presence of surface impurities, such as functional groups and adsorbed species. To unlock the full potential of EDLC active materials and corresponding electrodes, several post-production treatments are commonly proposed to improve their capacitance and, thus, the energy density of the corresponding devices. In this work, we report a systematic study of the effect of a prototypical treatment, namely H-assisted thermal treatment, on the chemical, structural, and thermal properties of activated carbon and corresponding electrodes.

View Article and Find Full Text PDF

Marine life is populated by a huge diversity of organisms with an incredible range of colour. While structural colour mechanisms and functions are usually well studied in marine animal species, there is a huge knowledge gap regarding the marine macroalgae (red, green and brown seaweeds) that have structural coloration and the biological significance of this phenomenon in these photosynthetic organisms. Here we show that structural colour in the gametophyte life history phase of the red alga plays an important role as a photoprotective mechanism in synergy with the other pigments present.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides are important optoelectronic materials thanks to their intense light-matter interaction and wide selection of fabrication techniques, with potential applications in light harvesting and sensing. Crucially, these applications depend on the lifetimes and recombination dynamics of photogenerated charge carriers, which have primarily been studied in monolayers obtained from labour-intensive mechanical exfoliation or costly chemical vapour deposition. On the other hand, liquid phase exfoliation presents a high throughput and cost-effective method to produce dispersions of mono- and few-layer nanosheets.

View Article and Find Full Text PDF

Photo-induced isomerization of azobenzene molecules drives mass migrations in azopolymer samples. The resulting macroscopic directional photo-deformation of the material morphology has found many applications in literature, although the fundamental mechanisms behind this mass transfer are still under debate. Hence, it is of paramount importance to find quantitative observables that could drive the community toward a better understanding of this phenomenon.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is a leading cause of cancer-related deaths, prompting the need for improved early detection methods.
  • The SiMoT technology, capable of analyzing single molecules, is proposed as a superior diagnostic tool compared to the existing SIMOA system for identifying pancreatic cancer precursor cysts.
  • SiMoT effectively differentiates between various types of pancreatic cysts using advanced data analysis techniques, highlighting its potential for enhancing diagnostics and enabling field-deployable liquid biopsy applications.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating branched side chains containing oxygen to improve the solubility of specific n-type copolymers made from benzodifuranone (BDF), isatin, and thiophene units.
  • A simple and flexible synthetic process is introduced, utilizing accessible starting materials to achieve side chains with different distances between the main backbone and branching points.
  • These modifications lead to highly soluble BDF-thiophene copolymers, reaching solubility levels of up to 90 mg/mL, and enhance their electrical conductivity, which can reach about 1 S/cm for high molar mass materials.
View Article and Find Full Text PDF

Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy.

Nat Commun

January 2024

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China.

Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves.

View Article and Find Full Text PDF

Ligand-Induced Chirality in ClMBA SnI 2D Perovskite.

Angew Chem Int Ed Engl

March 2024

Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy.

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA SnI (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system.

View Article and Find Full Text PDF

Correction: A poly(thymine)-templated fluorescent copper nanoparticle hydrogel-based visual and portable strategy for an organophosphorus pesticide assay.

Analyst

January 2024

Key Laboratory of Chem-Biosensing, Anhui Province, Key Laboratory of Functional Molecular Solids, Anhui Province, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.

Correction for 'A poly(thymine)-templated fluorescent copper nanoparticle hydrogel-based visual and portable strategy for an organophosphorus pesticide assay' by Jihua Chen , , 2019, , 2423-2429, https://doi.org/10.1039/C9AN00017H.

View Article and Find Full Text PDF

Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks.

Adv Mater

March 2024

Nanoscale Bioelectrical Characterization Group, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, Barcelona, 08028, Spain.

Charge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off.

View Article and Find Full Text PDF

One-Step Solution Deposition of Tin-Perovskite onto a Self-Assembled Monolayer with a DMSO-Free Solvent System.

ACS Energy Lett

December 2023

Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Italy.

We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a of 638 mV.

View Article and Find Full Text PDF

The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ).

View Article and Find Full Text PDF

The possibility of generating regions with different electronic properties within the same organic semiconductor thin film could offer novel opportunities for designing and fabricating organic electronic devices and circuits. This study introduces a new approach based on a novel type of highly processable polymer precursor that can yield two different conjugated polymers characterized by complementary electronic properties, promoting electron or hole transport, from the same starting material. In particular, these multipotent precursors comprise functionalized dihydroanthracene units that can offer several functionalization opportunities to improve the solubility or insert specific functionalities.

View Article and Find Full Text PDF

Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses.

View Article and Find Full Text PDF

The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization.

View Article and Find Full Text PDF

Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects.

View Article and Find Full Text PDF

Optical stimulation and control of muscle cell contraction opens up a number of interesting applications in hybrid robotic and medicine. Here we show that recently designed molecular phototransducer can be used to stimulate C2C12 skeletal muscle cells, properly grown to exhibit collective behaviour. C2C12 is a skeletal muscle cell line that does not require animal sacrifice Furthermore, it is an ideal cell model for evaluating the phototransducer pacing ability due to its negligible spontaneous activity.

View Article and Find Full Text PDF