1,882 results match your criteria: "Center for Molecular Imaging[Affiliation]"

Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.

View Article and Find Full Text PDF

The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.

View Article and Find Full Text PDF

Genipin-crosslinked double PLL membranes overcome the strength-diffusion trade-off in cell encapsulation without compromising biocompatibility.

Int J Pharm

January 2025

NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain. Electronic address:

Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment.

View Article and Find Full Text PDF

Optical molecular imaging technology and its application in precise surgical navigation of liver cancer.

Theranostics

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China.

Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology.

View Article and Find Full Text PDF

Colon cancer is one kind of malignant digestive tract tumor with high morbidity and mortality worldwide, treatments for which still face great challenges. Recently emerged intervention strategies such as phototherapy and gas therapy have displayed promising effects in the treatment of colon cancer, but their application are still hindered due to insufficient tumor targeting and deeper tissue penetrating capacity. Herein, in the present study, we developed one theranostic nanoplatform Cet-CDs-SNO (CCS) to realize multimodal imaging-guided synergistic colon cancer therapy.

View Article and Find Full Text PDF

Recent advances in ferrocene-based nanomedicines for enhanced chemodynamic therapy.

Theranostics

January 2025

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.

Theranostics

January 2025

School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

Brain diseases are a leading cause of disability and death worldwide. Early detection can lead to earlier intervention and better outcomes for patients. In recent years, optical coherence tomography (OCT) and OCT angiography (OCTA) imaging have been widely used in stroke, traumatic brain injury (TBI), and brain cancer due to their advantages of , unlabeled, and high-resolution 3D microvessel imaging at the capillary resolution level.

View Article and Find Full Text PDF

Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway.

J Nanobiotechnology

December 2024

Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.

Radiotherapy and immunotherapy have already become the primary form of treatment for non-small-cell lung cancer (NSCLC), but are limited by high radiotherapy dose and low immune response rate. Herein, a multi-pronged strategy using a radio-immuno-enhancer (ZnO-Au@mSiO) is developed by inducing tumor cells apoptosis and reprograming the immunosuppressive tumor microenvironment (TME). The radio-immuno-enhancer employed Au as a radiosensitizer, transition Zn ions as immune activators, which not only tremendously enhances the anti-proliferative activity of radiotherapy toward cancer cells, but also activates the immune response with multi-targets to let "exhausted" T cells "back to life" by triggering immunogenic cell death (ICD), immune checkpoint blockade (ICB) that target PD-1/PD-L1 and cGAS-STING under X-ray irradiation with a low dosage.

View Article and Find Full Text PDF

Hijacking endogenous iron to amplify lysosomal-mitochondrial cascade damage for boosting anti-tumor immunotherapy.

Biomaterials

May 2025

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu and metal ion dysregulation (i.

View Article and Find Full Text PDF

Background: Recent studies have shown that resting amygdalar activity is associated with cardiovascular disease. Nevertheless, the underlying mechanisms that link resting amygdalar activity with persistent atrial fibrillation (PerAF) remain to be comprehensively delineated. We aimed to estimate the association between resting amygdalar activity, right atrium (RA) inflammatory activity, and PerAF.

View Article and Find Full Text PDF

Atherosclerosis is a leading cause of morbidity and mortality worldwide, driven by a complex interplay of lipid dysregulation, inflammation, and vascular pathology. Despite advancements in understanding the multifactorial nature of atherosclerosis and improvements in clinical management, existing therapies often fall short in reversing the disease, focusing instead on symptom alleviation and risk reduction. This review highlights recent strides in identifying genetic markers, elucidating inflammatory pathways, and understanding environmental contributors to atherosclerosis.

View Article and Find Full Text PDF

Targeting Ferroptosis in Parkinson's Disease: Mechanisms and Emerging Therapeutic Strategies.

Int J Mol Sci

December 2024

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein in the brain. Ferroptosis, a recently identified form of regulated cell death, is critical in PD pathogenesis due to its association with iron deposition, overproduction of reactive oxygen species, iron-dependent lipid peroxidation and impaired lipid peroxidation clearance. This cell death mechanism is closely linked to several pathogenic processes in PD, including α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, microglia-induced neuroinflammation, and neuromelanin accumulation.

View Article and Find Full Text PDF

Intelligent Generic High-Throughput Oscillatory Shear Technology Fabricates Programmable Microrobots for Real-Time Visual Guidance During Embolization.

Small

December 2024

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.

Microrobots for endovascular embolization face challenges in precise delivery within dynamic blood vessels. Here, an intelligent generic high-throughput oscillatory shear technology (iGHOST) is proposed to fabricate diversely programmable, multifunctional microrobots capable of real-time visual guidance for in vivo endovascular embolization. Leveraging machine learning (ML), key synthesis parameters affecting the success and sphericity of the microrobots are identified.

View Article and Find Full Text PDF
Article Synopsis
  • Lumbar disc herniation (LDH) is a prevalent source of lower back pain and sciatica, with posterior lumbar interbody fusion (PLIF) being a standard treatment method, prompting a study on predicting blood transfusion needs during surgery.
  • This study involved 6,241 patients across 22 medical centers in China and utilized various machine learning techniques to create an optimal predictive model for intraoperative blood transfusion using robust evaluation methods.
  • The best-performing model, a simulated annealing support vector machine recursive + stacking model, achieved an area under the curve of 0.884, leading to the creation of a publicly accessible web calculator to aid clinicians in decision-making and improve patient management.
View Article and Find Full Text PDF

Late-stage (radio)fluorination of alkyl phosphonates via electrophilic activation.

Nat Commun

November 2024

State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China.

Constructing organic fluorophosphines, vital drug skeletons, through the direct fluorination of readily available alkyl phosphonates has been impeded due to the intrinsic low electrophilicity of P and the high bond energy of P═O bond. Here, alkyl phosphonates are electrophilically activated with triflic anhydride and N-heteroaromatic bases, enabling nucleophilic fluorination at room temperature to form fluorophosphines via reactive phosphine intermediates. This approach facilitates the late-stage (radio)fluorination of broad dialkyl and monoalkyl phosphonates.

View Article and Find Full Text PDF
Article Synopsis
  • The study proposes a deep learning method, SANR, to improve image quality in low-dose PET scans while maintaining diagnostic accuracy.
  • Testing involved 456 participants with varying PET scanners and tracers, comparing SANR with a 2D DL approach.
  • Results showed SANR achieved high lesion detection accuracy (95.3%) with significant improvements in image metrics, making it a viable option for reducing radiotracer dosage in diagnostic imaging without compromising quality.
View Article and Find Full Text PDF

Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced Immunotherapy.

Anal Chem

December 2024

Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Article Synopsis
  • Immunotherapy for triple-negative breast cancer (TNBC) faces challenges due to low immune system activation and a suppressive environment; however, bacterial outer membrane vesicles (OMVs) show promise as innovative agents.
  • A two-step bacterial metabolic labeling technique was employed to create DPG-functionalized OMVs, which were enhanced with new indocyanine green (IR820) for better targeting and immune activation.
  • The resulting OMV-DPG-IR820 stimulated strong immune responses and effectively inhibited tumor growth and metastasis, demonstrating a novel approach to improving immunotherapy for TNBC.
View Article and Find Full Text PDF

Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors.

J Control Release

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China. Electronic address:

Camptothecin (CPT) and podophyllotoxin (PPT) function as topoisomerase (TOP) I and tubulin inhibitors, respectively, with potent anticancer effects in a variety of cancers. Despite its promise, the clinical applicability of the combination of CPT and PPT faces challenges, including potential side effect and limited therapeutic efficacy. In this study, we designed co-assembly nanomedicines with the different weight (w/w) ratios of amphiphilic Evans blue conjugated CPT prodrug (EB-ss-CPT) and PPT molecules, denoted as ECT Nano.

View Article and Find Full Text PDF

Special Issue: "Vaccination and Global Health".

Vaccines (Basel)

October 2024

Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei 230601, China.

This Special Issue, titled 'Vaccination and Global Health,' compiles 11 broad-ranging papers, each exploring critical facets of vaccination, public health, and global healthcare systems [...

View Article and Find Full Text PDF

A deep learning method for the recovery of standard-dose imaging quality from ultra-low-dose PET on wavelet domain.

Eur J Nucl Med Mol Imaging

November 2024

Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.

Purpose: Recent development in positron emission tomography (PET) dramatically increased the effective sensitivity by increasing the geometric coverage leading to total-body PET imaging. This encouraging breakthrough brings the hope of ultra-low dose PET imaging equivalent to transatlantic flight with the assistance of deep learning (DL)-based methods. However, conventional DL approaches face limitations in addressing the heterogeneous domain of PET imaging.

View Article and Find Full Text PDF

Abnormal tumor metabolism leads to tumor growth, metastasis, and recurrence, reprogramming tumor metabolism and activating potent anti-tumor immune response have been demonstrated to have good therapeutic effects on tumor elimination. Copper-based nanomaterials involved in cuproptosis show great prospects in these two aspects, but their efficiency is restricted by Cu homeostasis and the toxicity of the chelator. Here, the pH-responsive AuNRs@CuO core-shell plasmonic hybrid nanorods (ACNRs) have been successfully fabricated to realize microenvironment-controlled release at the tumor site for the combined therapy of cuproptosis and photothermal treatment.

View Article and Find Full Text PDF

Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function.

J Am Chem Soc

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

Coassemblies with tailored functions, such as drug loading, tissue targeting and releasing, therapeutic and/or imaging purposes, and so on, have been widely studied and applied in biomedicine. design of these coassemblies hinges on an integrated approach involving synergy between various design strategies, ranging from structure screening of combinations of "phthalocyanine-chemotherapeutic drug" molecules for molecular scaffolds, exploration of related fabrication principles to verification of intended activity of specific designs. Here, we propose an integrated approach combining computation and experiments to design from scratch coassembled nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Epithelial ovarian cancer (EOC) is a challenging and deadly type of gynecological cancer, with a need for clearer understanding of its molecular subtypes and treatment options.
  • Mass spectrometry-based proteomics and single-cell RNA sequencing analyses revealed four distinct EOC proteomic subtypes that have unique clinical implications: malignant proliferative, immune infiltrating, Fallopian-like, and differentiated.
  • The immune infiltrating subtype (C2) shows potential for improved prognosis through therapies targeting CD40, while a specific therapeutic pathway involving a TYMP inhibitor was found to be effective for patients with non-immune EOC subtypes.
View Article and Find Full Text PDF

Background: Early evaluation of radiation sensitivity in lung cancer patients can facilitate the transition to personalized treatment strategies. To this end, we assessed the capability of Zr-anti-γH2AX-TAT microPET imaging in determining the radiosensitivity of lung cancer xenograft models. We prepared and conducted quality control on Zr-anti-γH2AX-TAT.

View Article and Find Full Text PDF