218 results match your criteria: "Center for Microbial Communities[Affiliation]"

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Consistent acidogenic co-fermentation of waste activated sludge and food waste under thermophilic conditions.

Water Res

March 2025

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. Electronic address:

Acidogenic co-fermentation of waste activated sludge (WAS) and food waste (FW) under thermophilic conditions enhances process consistency, while overcoming the problem of acetic acid consumption due to growing methanogens. Two long-term continuous co-fermentation experiments were carried out with a WAS:FW mixture (70:30 % in VS) at organic loading rate of 8 gVS/(L·d). Experiment 1 assessed the impact of temperature (35 °C and 55 °C) and WAS origin (WAS_A and WAS_B) in two collection periods.

View Article and Find Full Text PDF

pH-FISH: coupled microscale analysis of microbial identity and acid-base metabolism in complex biofilm samples.

Microbiome

December 2024

Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.

Background: Correlative structural and chemical imaging of biofilms allows for the combined analysis of microbial identity and metabolism at the microscale. Here, we developed pH-FISH, a method that combines pH ratiometry with fluorescence in situ hybridization (FISH) in structurally intact biofilms for the coupled investigation of microbial acid metabolism and biofilm composition. Careful biofilm handling and modified sample preparation procedures for FISH allowed preservation of the three-dimensional biofilm structure throughout all processing and imaging steps.

View Article and Find Full Text PDF

Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems.

Syst Appl Microbiol

January 2025

Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. Electronic address:

Wastewater treatment plants rely on complex microbial communities for bioconversion and removal of pollutants, but many process-critical species are still poorly investigated. One of these genera is Rhodoferax, an abundant core genus in wastewater treatment plants across the world. The genus has been associated with many metabolic traits such as iron reduction and oxidation and denitrification.

View Article and Find Full Text PDF

Unlabelled: Cable bacteria, filamentous sulfide oxidizers that live in sulfidic sediments, are at times associated with large flocks of swimming bacteria. It has been proposed that these flocks of bacteria transport electrons extracellularly to cable bacteria via an electron shuttle intermediate, but the identity and activity of these bacteria in freshwater sediment remain mostly uninvestigated. Here, we elucidate the electron exchange capabilities of the bacterial community by coupling metagenomics and metatranscriptomics to 16S rRNA amplicon-based correlations with cable bacteria over 155 days.

View Article and Find Full Text PDF

Unlabelled: Archaea catalyzing the first step of nitrification in the rhizosphere possibly have an influence on plant growth and development. In this study, we found a distinct archaeal community, dominated by ammonia-oxidizing archaea (AOA), associated with the root system of pepper ( L.) and ginseng plants ( C.

View Article and Find Full Text PDF

Quantification of guanidine in environmental samples using benzoin derivatization and LC-MS analysis.

MethodsX

December 2024

Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria.

The recent discovery of guanidine-dependent riboswitches in many microbes raised interest in the biological function and metabolism of this nitrogen-rich compound. However, very little is known about the concentrations of guanidine in the environment. Several methods have been published for quantifying guanidine and guanidino compounds in human urine and blood, often relying on derivatization followed by fluorescence detection.

View Article and Find Full Text PDF

This study addresses the challenge of obtaining in situ information on substrate utilization rates for individual microbial species in complex microbial communities such as anaerobic digester sludge. To overcome this hurdle, a novel approach combining doubly-labelled deuterium, fluorescence in situ hybridization (FISH) and Raman microspectroscopy was developed. The method enables quantitative determination of anabolic heavy hydrogen incorporation into FISH-targeted, exemplified by methanogenic cells from the genera Methanosarcina and Methanothermobacter.

View Article and Find Full Text PDF

Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats.

View Article and Find Full Text PDF

In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal.

View Article and Find Full Text PDF

Metabolite release by nitrifiers facilitates metabolic interactions in the ocean.

ISME J

January 2024

Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Lagoon Road, Santa Barbara, CA 93106, United States.

Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211.

View Article and Find Full Text PDF

Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps.

View Article and Find Full Text PDF

Microbial core communities in activated sludge plants are strongly affected by immigration and geography.

Environ Microbiome

August 2024

Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.

Background: The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km).

View Article and Find Full Text PDF

Guanidine is a chemically stable nitrogen compound that is excreted in human urine and is widely used in manufacturing of plastics, as a flame retardant and as a component of propellants, and is well known as a protein denaturant in biochemistry. Guanidine occurs widely in nature and is used by several microorganisms as a nitrogen source, but microorganisms growing on guanidine as the only substrate have not yet been identified. Here we show that the complete ammonia oxidizer (comammox) Nitrospira inopinata and probably most other comammox microorganisms can grow on guanidine as the sole source of energy, reductant and nitrogen.

View Article and Find Full Text PDF

Phosphorous speciation in EPS extracted from Aerobic Granular Sludge.

Water Res

September 2024

Dept. Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

Wastewater treatment technologies opened the door for recovery of extracellular polymeric substances (EPS), presenting novel opportunities for use across diverse industrial sectors. Earlier studies showed that a significant amount of phosphorus (P) is recovered within extracted EPS. P recovered within the extracted EPS is an intrinsic part of the recovered material that potentially influences its properties.

View Article and Find Full Text PDF

The use of short-read metabarcoding for classifying microeukaryotes is challenged by the lack of comprehensive 18S rRNA reference databases. While recent advances in high-throughput long-read sequencing provide the potential to greatly increase the phylogenetic coverage of these databases, the performance of different sequencing technologies and subsequent bioinformatics processing remain to be evaluated, primarily because of the absence of well-defined eukaryotic mock communities. To address this challenge, we created a eukaryotic rRNA operon clone-library and turned it into a precisely defined synthetic eukaryotic mock community.

View Article and Find Full Text PDF

Resilience towards organic load and activated sludge variations in co-fermentation for carboxylic acid production.

Bioresour Technol

August 2024

Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.

Two perturbations were investigated in acidogenic co-fermentation of waste activated sludge (WAS) and food waste in continuous mesophilic fermenters: increasing the organic loading rate (OLR) and changing the WAS. A control reactor maintained an OLR of 11 gVS/(L·d), while a test reactor had a prolonged OLR change to 18 gVS/(L·d). For each OLR, two WAS were studied.

View Article and Find Full Text PDF

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5.

View Article and Find Full Text PDF

FePO.2HO recovery from acidic phosphate-rich waste streams.

Water Res

August 2024

Department Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.

Phosphorous not only needs to be removed to prevent eutrophication of wastewater effluent receiving surface water bodies, but it also has to be recovered as a scarce finite reserve. Phosphorus chemical precipitation as NHMgPO·6HO, Ca(PO), or Fe(PO) ·8HO is the most common method of phosphorus recovery from phosphorus-rich streams. These minerals ideally form under neutral to alkaline pH conditions, making acidic streams problematic for their formation due to the need for pH adjustments.

View Article and Find Full Text PDF
Article Synopsis
  • Serpentinization is a geochemical process that creates environments on Earth where certain microbes can produce methane and acetogen; this study specifically explores a location in California called The Cedars.
  • Researchers sequenced the genome of a Methanocellales archaeon, named Met12, which interestingly does not contain key genes for methane production but has genes related to acetogenesis.
  • The study findings indicate that Met12 functions as an electron-fueled acetogen rather than a methanogen, highlighting its potential role in carbon reduction without electron bifurcation.
View Article and Find Full Text PDF

Nitrous oxide respiration in acidophilic methanotrophs.

Nat Commun

May 2024

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (NO) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen.

View Article and Find Full Text PDF

Background And Aims: To investigate if treatment with non-pooled, multidonor faecal microbiota transplantation [FMT] for 4 weeks was superior to placebo to induce clinical remission in patients with chronic pouchitis.

Methods: The study was a randomised, double-blinded, placebo-controlled study with a 4-week intervention period and 12-month follow-up. Eligible patients with chronic pouchitis were recruited from five Danish hospitals.

View Article and Find Full Text PDF

Reductions in sequencing costs have enabled widespread use of shotgun metagenomics and amplicon sequencing, which have drastically improved our understanding of the microbial world. However, large sequencing projects are now hampered by the cost of library preparation and low sample throughput, comparatively to the actual sequencing costs. Here, we benchmarked three high-throughput DNA extraction methods: ZymoBIOMICS™ 96 MagBead DNA Kit, MP BiomedicalsTM FastDNATM-96 Soil Microbe DNA Kit, and DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit.

View Article and Find Full Text PDF

Background: Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete.

View Article and Find Full Text PDF