10 results match your criteria: "Center for MicroBioRobotics@SSSA[Affiliation]"

Immunological properties of Andean starch films are independent of their nanometric roughness and stiffness.

Int J Biol Macromol

April 2015

Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnology@UniLe, Via Barsanti 1, 73010 Arnesano, Lecce, Italy. Electronic address:

Starch is a natural material extracted from roots, seeds, stems and tubers of different plants. It can be processed as a thermoplastic to produce a variety promising products for biomedical applications, including foams, sheets and films. In the present work, we investigated the immunological properties of microfilms prepared with starches extracted from six different types of Andean potatoes and their relationship with the different film-surface features.

View Article and Find Full Text PDF

The need for a better understanding of cell behavior and for exploiting cell functions in various healthcare applications has driven biomedical research to develop increasingly complex fabrication strategies to reproduce the natural biological microenvironment in vitro. Different approaches have led to the development of refined examples of 2- and 3-D structures able to sustain cellular proliferation, differentiation and functionality very similar to those normally occurring in living organisms. One such approach is two-photon polymerization.

View Article and Find Full Text PDF

A process is presented for the fabrication of patterned ultrathin free-standing conductive nanofilms based on an all-polymer bilayer structure composed of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) and poly(lactic acid) (PEDOT:PSS/PLA). Based on the strategy recently introduced by our group for producing large area free-standing nanofilms of conductive polymers with ultrahigh conformability, here an inkjet subtractive patterning technique was used, with localized overoxidation of PEDOT:PSS that caused the local irreversible loss of electrical conductivity. Different pattern geometries (e.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials, and preliminar but encouraging studies about their applications in biomedicine have emerged in the latest years. As a consequence, a systematic investigation of their biosafety has become of fundamental importance in the biomedical research. Extending our previous pilot in vivo study, here we present biocompatibility data of BNNTs injected in rabbits at a dose up to 10mg/kg.

View Article and Find Full Text PDF

Microwrinkled conducting polymer interface for anisotropic multicellular alignment.

ACS Appl Mater Interfaces

February 2013

Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.

Surfaces with controlled micro and nanoscale topographical cues are useful as smart scaffolds and biointerfaces for cell culture. Recently, use of thin-film and surface wrinkling is emerging as a rapid unconventional method for preparing topographically patterned surfaces, especially suited for the production of smart patterns over large area surfaces. On the other hand, there is an increasing interest in employing conducting polymers as soft, biocompatible, conductive biointerfaces or as parts of bioelectronic devices.

View Article and Find Full Text PDF

PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates.

J Tissue Eng Regen Med

February 2015

Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, (Pisa), Italy; Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025, Pontedera, (Pisa), Italy.

In the last decade, the importance of topographic properties of extracellular environments has been shown to be essential to addressing cell response, especially when replacing damaged tissues with functional constructs obtained in vitro. In the current study, densely packed sub-micron poly(3-hydroxybutyrate) (PHB) fibres were electrospun with random and parallel orientations. PC12 pheochromocytoma cells that mimic central dopaminergic neurons and represent a model for neuronal differentiation were cultured on collagen-coated fibres to evaluate cell response dependence on substrate topography.

View Article and Find Full Text PDF

In the last years, an increasing interest in bio-hybrid systems for what concerns the precise control of cell-material interactions has emerged. This trend leads towards the development of new nano-structured devices such as bioMEMS, tissue-engineering scaffolds, biosensors, etc. In the present study, we focused on the development of a spatio-selective cell culture environment based on the inkjet printing of bio-patterns on polymeric ultra-thin films (nanofilms) composed of poly(methylmethacrylate) (PMMA).

View Article and Find Full Text PDF

In this paper we report on a covalent grafting of boron nitride nanotubes with human transferrin. After silanization of the nanotube wall, transferrin was linked to the nanotubes through carbamide binding. The obtained transferrin-conjugated boron nitride nanotubes (tf-BNNTs) resulted stable in aqueous environments and were characterized in terms of scanning electron microscopy, transmission electron microscopy, size distribution analysis and Z-potential measurement.

View Article and Find Full Text PDF

Freely suspended nanocomposite thin films based on soft polymers and functional nanostructures have been widely investigated for their potential application as active elements in microdevices. However, most studies are focused on the preparation of nanofilms composed of polyelectrolytes and charged colloidal particles. Here, a new technique for the preparation of poly(l-lactic acid) free-standing nanofilms embeddidng superparamagnetic iron oxide nanoparticles is presented.

View Article and Find Full Text PDF

Ultrathin films (also called nanofilms) are two-dimensional (2-D) polymeric structures with potential application in biology, biotechnology, cosmetics and tissue engineering. Since they can be handled in liquid form with micropipettes or tweezers they have been proposed as flexible systems for cell adhesion and proliferation. In particular, with the aim of designing a novel patch for bone or tendon repair and healing, in this work the biocompatibility, adhesion and proliferation activity of Saos-2, MRC-5 and human and rat mesenchymal stem cells on poly(lactic acid) nanofilms were evaluated.

View Article and Find Full Text PDF