42 results match your criteria: "Center for Medical Life Science of Waseda University[Affiliation]"

Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone.

Front Neuroendocrinol

January 2022

Department of Biology and Center for Medical Life Science of Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Hiroshima 739-8521, Japan.

Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system.

View Article and Find Full Text PDF

The social environment changes circulating hormone levels and expression of social behavior in animals. Social information is perceived by sensory systems, leading to cellular and molecular changes through neural processes. Peripheral reproductive hormone levels are regulated by activity in the hypothalamic-pituitary-gonadal (HPG) axis.

View Article and Find Full Text PDF

The brain produces steroids de novo from cholesterol, so-called "neurosteroids." The Purkinje cell, a cerebellar neuron, was discovered as a major site of the biosynthesis of neurosteroids including sex steroids, such as progesterone, from cholesterol in the brain. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on the Purkinje cell to prevent cell death of this neuron.

View Article and Find Full Text PDF

Regulation of the hypothalamic GnRH-GnIH system by putrescine in adult female rats and GT1-7 neuronal cell line.

J Exp Zool A Ecol Integr Physiol

April 2020

Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India.

The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image.

View Article and Find Full Text PDF

Kisspeptin, encoded by the Kiss-1 gene, plays a crucial role in reproductive function by governing the hypothalamic-pituitary-gonadal axis. The recently established Kiss-1-expressing cell model mHypoA-50 displays characteristics of neuronal cells of the anteroventral periventricular (AVPV) region of the mouse hypothalamus. Because Kiss-1 gene expression in these cells is upregulated by estradiol (E2), mHypoA-50 cells are regarded as a valuable model for the study of Kiss-1-expressing neurons in the AVPV region.

View Article and Find Full Text PDF

Kobayashi award: Discovery of cerebellar and pineal neurosteroids and their biological actions on the growth and survival of Purkinje cells during development (review).

Gen Comp Endocrinol

December 2019

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. Electronic address:

The brain has traditionally been considered to be a target site of peripheral steroid hormones. On the other hand, extensive studies over the past thirty years have demonstrated that the brain is a site of biosynthesis of several steroids. Such steroids synthesized de novo from cholesterol in the brain are called neurosteroids.

View Article and Find Full Text PDF

The recently established immortalized hypothalamic cell model mHypoA-55 possesses characteristics similar to those of Kiss-1 neurons in the arcuate nucleus (ARC) region of the hypothalamus. Here, we show that Kiss-1 gene expression in these cells was downregulated by 17β-estradiol (E2) under certain conditions. Both neurotensin (NT) and corticotropin-releasing hormone (CRH) were expressed in these cells and upregulated by E2.

View Article and Find Full Text PDF

At the turn of the millennium, a neuropeptide with pronounced inhibitory actions on avian pituitary gonadotrophin secretion was identified and named gonadotrophin-inhibitory hormone (GnIH). Across bird species, GnIH acts at the level of the pituitary and the gonadotrophin-releasing hormone (GnRH) neuronal system to inhibit reproduction. Subsequent to this initial discovery, orthologues of GnIH have been identified and characterised across a broad range of species.

View Article and Find Full Text PDF

It is known that hypothyroidism delays puberty in mammals. Interaction between the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-gonadal (HPG) axes may be important processes in delayed puberty. Gonadotropin-inhibitory hormone (GnIH) is a newly discovered hypothalamic neuropeptide that inhibits gonadotropin synthesis and release in quail.

View Article and Find Full Text PDF

Noradrenergic modulation of gonadotrophin-inhibitory hormone gene expression in the brain of Japanese quail.

J Neuroendocrinol

August 2017

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan.

Gonadotrophin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotrophin synthesis and release in birds and mammals. In Japanese quail, GnIH neurones express the noradrenergic receptor and receive noradrenergic innervation. Treatment with noradrenaline (NA) stimulates GnIH release from diencephalic tissue blocks in vitro.

View Article and Find Full Text PDF

Involvement of gonadotropin-inhibitory hormone in pubertal disorders induced by thyroid status.

Sci Rep

April 2017

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan.

Thyroid disorders cause abnormal puberty, indicating interactions between the hypothalamus-pituitary-thyroid (HPT) and hypothalamus-pituitary-gonadal (HPG) axes, which are important in pubertal development. The hypothalamic gonadotropin-inhibitory hormone (GnIH) was shown to be decreased in the early prepubertal stage, suggesting the role of GnIH on pubertal onset. Here, we investigated whether thyroid dysfunction affects pubertal onset in female mice via GnIH regulation.

View Article and Find Full Text PDF

Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7.

View Article and Find Full Text PDF

7α-Hydroxypregnenolone regulates diurnal changes in sexual behavior of male quail.

Gen Comp Endocrinol

February 2016

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan. Electronic address:

In the Japanese quail, 7α-hydroxypregnenolone, a previously undescribed avian neurosteroid, is actively produced in the brain. 7α-Hydroxypregnenolone acts as a novel neuronal activator to stimulate locomotor activity of quail. Therefore, in this study, we determined whether 7α-hydroxypregnenolone changes the expression of sexual behavior in Japanese quail.

View Article and Find Full Text PDF

RF-(Arg-Phe) related peptides (RFRP-1 and -3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP-1 and -3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters.

View Article and Find Full Text PDF

Possible hormonal interaction for eliciting courtship behavior in the male newt, Cynops pyrrhogaster.

Gen Comp Endocrinol

December 2015

Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan; Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.

Reproductive behavior in amphibians, as in other vertebrate animals, is under the control of multiple hormonal substances. Prolactin (PRL), arginine vasotocin (AVT), androgen, and 7α-hydroxypregnenolone (7α-OH PREG), four such substances with hormonal activity, are known to be involved in the expression of the tail vibration behavior which is the initial step of courtship performed by the male newt, Cynops pyrrhogaster. As current information on the interaction(s) between these hormones in terms of eliciting tail vibration behavior is limited, we have investigated whether the decline of expression of tail vibration behavior due to suppression of the activity of any one of these hormones can be restored by supplying any one of the other three hormones exogenously.

View Article and Find Full Text PDF

Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals.

Front Neuroendocrinol

April 2015

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Animals inhabiting temperate and boreal latitudes experience marked seasonal changes in the quality of their environments and maximize reproductive success by phasing breeding activities with the most favorable time of year. Whereas the specific mechanisms driving seasonal changes in reproductive function vary across species, converging lines of evidence suggest gonadotropin-inhibitory hormone (GnIH) serves as a key component of the neuroendocrine circuitry driving seasonal changes in reproduction and sexual motivation in some species. In addition to anticipating environmental change through transduction of photoperiodic information and modifying reproductive state accordingly, GnIH is also positioned to regulate acute changes in reproductive status should unpredictable conditions manifest throughout the year.

View Article and Find Full Text PDF

Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor.

View Article and Find Full Text PDF

Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by corticosterone.

Endocrinology

May 2014

Laboratory of Integrative Brain Sciences (Y.L.S., T.U., M.N., Y.F., I.H., K.Y., K.T.), Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan; and Departments of Physiology (D.D.B.), Medicine, and Obstetrics and Gynaecology, University of Toronto, and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8.

The inhibitory effect of stress on reproductive function is potentially mediated by high concentrations of circulating glucocorticoids (GCs) acting via the GC receptor (GR). Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion. GnIH may mediate stress-induced reproductive dysfunction.

View Article and Find Full Text PDF

Molecular evolution of GPCRs: 26Rfa/GPR103.

J Mol Endocrinol

June 2014

Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France

Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated as RFamide peptides) have been characterized in a variety of animals. Among these, neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a 26-amino acid residue peptide that was originally identified in the frog brain.

View Article and Find Full Text PDF

Molecular evolution of kiss2 genes and peptides in vertebrates.

Endocrinology

November 2013

PhD, Professor, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

The kiss1 peptide (kisspeptin), a product of the kiss1 gene, is one of the key neuropeptides regulating vertebrate reproduction. In 2009, we identified a paralogous gene of kiss1 in the brain of amphibians and named it kiss2. Currently, the presence of the kiss2 gene and the kiss2 peptide is still obscure in amniotes compared with that in other vertebrates.

View Article and Find Full Text PDF

Gonadotropin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH) neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R), GPR147. Subsequently, GnIH was identified in mammals and other vertebrates.

View Article and Find Full Text PDF

Create new research directions in comparative endocrinology from Asia and Oceania.

Gen Comp Endocrinol

January 2013

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

The Asia and Oceania Society for Comparative Endocrinology (AOSCE) was founded in 1987, when the first congress was held in Nagoya, Japan. The purpose of the AOSCE is to progress scientific activities in the field of comparative endocrinology in Asia and Oceania and to establish a deep relationship among the members. For this purpose, the AOSCE holds a congress or an intercongress symposium every 2 years, which organizes an attractive scientific program covering the latest progress in the broad aspect of comparative endocrinology.

View Article and Find Full Text PDF

Evolutionary origin of the structure and function of gonadotropin-inhibitory hormone: insights from lampreys.

Endocrinology

May 2012

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Gonadotropin (GTH)-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that inhibits GTH secretion in mammals and birds by acting on gonadotropes and GnRH neurons within the hypothalamic-pituitary-gonadal axis. GnIH and its orthologs that have an LPXRFamide (X = L or Q) motif at the C terminus (LPXRFamide peptides) have been identified in representative species of gnathostomes. However, the identity of an LPXRFamide peptide had yet to be identified in agnathans, the most ancient lineage of vertebrates, leaving open the question of the evolutionary origin of GnIH and its ancestral function(s).

View Article and Find Full Text PDF

Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect.

Gen Comp Endocrinol

July 2012

Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.

A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH), is the primary factor regulating gonadotropin secretion. An inhibitory hypothalamic neuropeptide for gonadotropin secretion was, until recently, unknown, although gonadal sex steroids and inhibin can modulate gonadotropin secretion. Findings from the last decade, however, indicate that GnRH is not the sole hypothalamic regulatory neuropeptide of vertebrate reproduction, with gonadotropin-inhibitory hormone (GnIH) playing a key role in the inhibition of reproduction.

View Article and Find Full Text PDF

A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and release by acting on pituitary gonadotropes and GnRH neurons in the hypothalamus via its receptor (GnIH receptor).

View Article and Find Full Text PDF