7,659 results match your criteria: "Center for Life Nano- & Neuro-Science[Affiliation]"

Introduction: Chile has achieved developed nation status and boasts a life expectancy of 81 + years; however, the healthcare and research systems are unprepared for the social and economic burden of cancer. One decade ago, the authors put forward a comprehensive analysis of cancer infrastructure, together with a series of suggestions on research orientated political policy.

Objectives: Provide an update and comment on policy, infrastructure, gender equality, stakeholder participation and new challenges in national oncology.

View Article and Find Full Text PDF

Nanoconjugates are promising for therapeutic drug delivery and targeted applications due to the numerous opportunities to functionalize their surface. The present study reports the synthesis of 5-fluorouracil (5-FU)-entrapped polyvinylpyrrolidone (PVP) nanoconjugates, precisely 5-FU-PVP and 5-FU-PVP-Au, and the evaluation of protein aggregation inhibition efficiency. The 5-FU-loaded polymer nanoconjugates were functionalized with gold nanoparticles and analyzed using characterization techniques like dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and zeta potential analysis.

View Article and Find Full Text PDF

Utilizing Engineered Bacteria as "Cell Factories" for Intracellular RNA-Loaded Outer Membrane Vesicles' Self-Assembly in Tumor Treatment.

ACS Nano

December 2024

School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China.

Delivery systems play a crucial role in RNA therapy. However, the current RNA delivery system involves complex preparation and transport processes, requiring RNA preassembly , transportation at low temperatures throughout, and possibly multiple injections for improved therapeutic efficacy. To address these challenges, we developed a simple and efficient RNA delivery system.

View Article and Find Full Text PDF

Zn and Cl Coregulated MXene Catalyst Enhances Li-CO Battery Reversibility.

ACS Nano

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China.

MXenes are promising cathodes for Li-CO batteries owing to their high electrical conductivity and efficient CO activation function. However, the effects of adsorption and electronic structures of MXene on the full life cycle of Li-CO batteries have been rarely investigated. Here, we employ a coregulation approach to enhance the adsorption-decomposition of lithium carbonate (LiCO) by introducing Zn and Cl surface groups onto the TiC MXene (Zn-TiCCl) catalyst.

View Article and Find Full Text PDF

Controllable Self-Assembly of V═O Metalloradical Complex with Intramolecular Charge Transfer for Enhanced NIR-II Fluorescence Imaging-Guided Photothermal Therapy.

Adv Healthc Mater

December 2024

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.

Near-infrared second region (NIR-II) fluorescence imaging provides enhanced tissue penetration, achieving efficient NIR-II fluorescence and photoacoustic imaging (PA)-guided photothermal therapy (PTT) all in one material remains a challenging yet promising approach in cancer treatment. Herein, open-shell V═O metalloradical complex (VONc) is self-assembled into VONc nanospheres (VONc NPs). VONc NPs exhibit light absorption from 300 to 1400 nm, fluorescence spectra ranging from 900 to 1400 nm, and a distinct fluorescence signal even at 1550 nm.

View Article and Find Full Text PDF

Dendritic challenges in Li metal batteries are commonly resolved using porous three-dimensional (3D) current collectors, which have a significant issue in that Li is deposited from the top (top growth) of the structure rather than from the bottom (bottom growth), failing to effectively suppress dendrite growth and volumetric expansion. We propose the structure incorporating a gradient lithiophilic seed within a 3D framework by pulse electroplating Mg, specifically targeting the near bottom to promote bottom growth and achieve dense Li deposition. This method achieves precise control over the catalytic seed size and distribution.

View Article and Find Full Text PDF

Apigenin (APG) is being investigated for its potential in treating different forms of cancer. It can regulate many cellular processes, such as cell proliferation, apoptosis, cell cycle arrest, invasion, metastasis, and autophagy, via controlling multiple cellular signaling pathways. In addition, this chemical demonstrates a significant preference for cancer cells over healthy cells.

View Article and Find Full Text PDF

The pipeline transport industry is constantly developing due to the high efficiency, long life, varied diameters of the pipelines, but a significant problem is the corrosion that occurs because of the corrosive attack of the various environments in which the pipelines are used. This study deals with the ex situ characterizations (optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray analyses, X-ray diffraction analysis, roughness, and Vickers hardness analyses) and the in situ characterizations (gravimetric and electrochemical methods). Samples of steel were tested at immersion time, after 336 h, 672 h, 1344 h, 2016 h, and 4032 h of exposure to a 3.

View Article and Find Full Text PDF

This paper describes the potential of carbon dot nanocomposites (CDs) synthesized from waste materials by top-down and bottom-up state-of-the-art approaches. Through sustainable practices, wastes are converted into valuable nanomaterials, solving environmental problems and pioneering advances in nanotechnology. In this paper, an overview of the synthesis aspects of CDs is presented with the formation of their versatile nanocomposites and metal/metal oxide elements.

View Article and Find Full Text PDF

Bright Quantum-Grade Fluorescent Nanodiamonds.

ACS Nano

December 2024

Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.

View Article and Find Full Text PDF

Size-Coded Hydrogel Microbeads for Extraction-Free Serum Multi-miRNAs Quantifications with Machine-Learning-Aided Lung Cancer Subtypes Classification.

Nano Lett

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Classifying lung cancer subtypes, which are characterized by multi-microRNAs (miRNAs) upregulation, is important for therapy and prognosis evaluation. Liquid biopsy is a promising approach, but the pretreatment of RNA extraction is labor-intensive and impairs accuracy. Here we develop size-coded hydrogel microbeads for extraction-free quantification of miR-21, miR-205, and miR-375 directly from serum.

View Article and Find Full Text PDF

The moderate working voltage and high capacity of transition metal dichalcogenides (TMDs) make them promising anode materials for aqueous calcium-ion batteries (ACIBs). However, the large radius and two charges of Ca cause TMDs to exhibit poor performance in ACIBs. Therefore, effective regulation strategies are crucial for enabling the application of TMDs in ACIBs.

View Article and Find Full Text PDF

Arginine-Loaded Nano-Calcium-Phosphate-Stabilized Lipiodol Pickering Emulsions Potentiates Transarterial Embolization-Immunotherapy.

Adv Sci (Weinh)

December 2024

Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.

Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism.

View Article and Find Full Text PDF

The crucial link between pathological protein aggregations and lipids in Alzheimer's disease pathogenesis is increasingly recognized, yet its spatial dynamics remain challenging for labeling-based microscopy. Here, we demonstrate photothermal ratio-metric infrared spectro-microscopy (PRISM) to investigate the structural and molecular compositions of pathological features in brain tissues at submicron resolution. By identifying the vibrational spectroscopic signatures of protein secondary structures and lipids, PRISM tracks the structural dynamics of pathological proteins, including amyloid and hyperphosphorylated Tau (pTau).

View Article and Find Full Text PDF

The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

Solar steam generation (SSG) presents a promising approach to addressing the global water crisis. Central to SSG is solar photothermal conversion that requires efficient light harvesting and management. Hierarchical structures with multi-scale light management are therefore crucial for SSG.

View Article and Find Full Text PDF

A novel directed enzymolysis strategy for the preparation of umami peptides in Stropharia rugosoannulata and its mechanism of taste perception.

Food Chem

March 2025

Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

This study aimed to explore the effect of directed enzymolysis on the umami characteristics of S. rugosoannulata, clarify the flavour formation mechanism of umami peptides. We expressed a new aminopeptidase (DNPEP) and obtained the umami peptides of S.

View Article and Find Full Text PDF

Recent advances on artificial intelligence-based approaches for food adulteration and fraud detection in the food industry: Challenges and opportunities.

Food Chem

March 2025

Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9(th) Mile, Baridua, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India. Electronic address:

Food adulteration is the deceitful practice of misleading consumers about food to profit from it. The threat to public health and food quality or nutritional valuable make it a major issue. Food origin and adulteration should be considered to safeguard customers against fraud.

View Article and Find Full Text PDF

Intestinal bacteria play a critical role in the regulation of the host immune system and an imbalance in intestinal bacterial composition induces various host diseases. Therefore, maintaining a balance in the intestinal bacterial composition is crucial for health. Immunoglobulin A (IgA), produced through T cell-dependent and T cell-independent (TI) pathways, is essential for host defense against pathogen invasion and maintaining the balance of intestinal symbiotic bacteria.

View Article and Find Full Text PDF

Transformative laboratory medicine enabled by microfluidic automation and artificial intelligence.

Biosens Bioelectron

March 2025

School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026 PR China. Electronic address:

Laboratory medicine provides pivotal medical information through analyses of body fluids and tissues, and thus, it is essential for diagnosis of diseases as well as monitoring of disease progression. Despite its universal importance, the field is currently suffering from the limited workforce and analytical capabilities due to the increasing pressure from expanding global population and unexpected rise of noncommunicable diseases. The emerging technologies of microfluidic automation and artificial intelligence (AI) has led to the development of advanced diagnostic platforms, positioning themselves as adaptable solutions to enable highly efficient and accessible laboratory medicine.

View Article and Find Full Text PDF

A Supramolecular Deferoxamine-Crisaborole Nanoparticle Targets Ferroptosis, Inflammation, and Oxidative Stress in the Treatment of Retinal Ischemia/Reperfusion Injury.

Nano Lett

January 2025

Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China.

Retinal ischemia-reperfusion (IR) injury is a major cause of vision loss worldwide, with ferroptosis, oxidative stress, and inflammation playing key roles in its pathogenesis. Currently, treatments targeting multiple aspects of this condition are limited. This study introduces a supramolecular nanoparticle combining the phosphodiesterase 4 (PDE4) inhibitor crisaborole and the ferroptosis inhibitor deferoxamine to address these pathological processes.

View Article and Find Full Text PDF

combined with L858R mutation reduced afatinib sensitivity and associated to early recurrence in lung cancer.

Transl Lung Cancer Res

November 2024

Department of Respiratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.

Background: The third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib is widely used as a first-line treatment for -mutated non-small cell lung cancer (NSCLC). However, there is no established treatment for osimertinib resistance, so second-generation afatinib is an alternative treatment option. The purpose of this study was to elucidate gene alterations associated with afatinib efficacy and resistance by analyzing cell-free DNA (cfDNA) obtained from patients with -mutated NSCLC.

View Article and Find Full Text PDF

During morphogenesis, epithelial sheets undergo sequential folding to form three-dimensional organ structures. The resulting folds are often irreversible, ensuring that morphogenesis progresses in one direction. However, the mechanism establishing folding irreversibility remains unclear.

View Article and Find Full Text PDF

A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice.

View Article and Find Full Text PDF

Macroencapsulation Device with Anti-inflammatory Membrane Modification Enhances Long-Term Viability and Function of Transplanted β Cells.

ACS Appl Mater Interfaces

December 2024

Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.

Treating type 1 diabetes (T1D) through β-cell macroencapsulation is a promising long-term solution, but it faces challenges such as immune-mediated fibrosis on the capsule surface, which impairs cell functionality and compromises longevity and effectiveness. This study presents an approach for including an anti-inflammatory molecule on the macroencapsulation device (MED) using initiated chemical vapor deposition for the surface modification of poly(tetrafluoroethylene) (PTFE) membranes. The surface-modified MEDs significantly reduced fibrosis, improved β-cell viability and functionality, and promoted M2 macrophage polarization, which is associated with anti-inflammatory effects.

View Article and Find Full Text PDF