7,659 results match your criteria: "Center for Life Nano- & Neuro-Science[Affiliation]"

[Application of Nano-drug Delivery Technology in Overcoming Drug Resistance 
in Lung Cancer].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital 
of University of Electronic Science and Technology of China, Chengdu 610042, China.

Lung cancer is one of the most malignant tumor, representing a significant threat to human health. In China, its mortality rate is the highest among all malignant tumors. The occurrence of drug resistance has resulted in unfavourable prognosis for patients with lung cancer, and overcoming drug resistance is a significant challenge that needs to be addressed.

View Article and Find Full Text PDF

Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis.

Biomaterials

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:

Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.

View Article and Find Full Text PDF

Nano-TiO impairs the health of crabs Charybdis japonica under warming conditions through waterborne and dietary exposures.

J Hazard Mater

January 2025

International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The widespread use of nano titanium dioxide (nano-TiO₂) poses ecological risks to marine ecosystems, especially when combined with ocean warming. However, most previous studies have only examined water-related exposures, leaving a gap in research on the impact of food transfer on organisms. In this work, the harmful impacts of nano-TiO on the Japanese swimming crab Charybdis japonica were studied through three scenarios: direct exposure (DE) of the crabs to warming and nano-TiO, indirect exposure (IE) via consumption of thick-shelled mussels Mytilus coruscus exposed to the same conditions, and combined exposure (CE), where crabs were directly subjected to warming and nano-TiO while feeding affected mussels.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

Biological and environmental degradation of two-dimensional materials.

Nat Rev Chem

January 2025

CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France.

As the use of two-dimensional materials continues to grow, so too does the need to understand the environmental and biological impact of such materials. Degradation is a critical step in the life cycle of any material, but the majority of such knowledge is obtained from test tube and in vitro studies. Therefore, there remains a gap in understanding the degradability of two-dimensional materials in complex systems (in vivo) and in different ambient environments.

View Article and Find Full Text PDF

Higher-end science and technology facilitate the human community with a sophisticated life despite it curses by abundant pollution. The alarming demand for sustainability pressurizes the manufacturing sector to ensure sustainable manufacturing. Since Molybdenum di sulfide (MoS) and avocado oil are known solid and liquid lubricants respectively, hence, it is a worthwhile attempt to implement the bio-based degradable avocado oil enriched with nano Molybdenum di sulfide (nMoS) particles as a potential machining fluid for CNC-end milling.

View Article and Find Full Text PDF

Optically Decoupling Electrochromic Dynamics and Morphological Evolution of a Single Soft Polyaniline Nanoentity.

Nano Lett

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped.

View Article and Find Full Text PDF

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

In Vitro Selection of Collagen-Binding Vascular Endothelial Growth Factor Containing Genetically Encoded Mussel-Inspired Adhesive Amino Acids.

Chemistry

January 2025

Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.

View Article and Find Full Text PDF

Enhanced Osteoporosis Treatment via Nano Drug Coating Encapsulating GG.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China.

Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. Although GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability.

View Article and Find Full Text PDF

Surface S-Doped Nanostructured RuO and Its Anion Passivating Effect for Efficient Overall Seawater Splitting.

ACS Nano

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.

View Article and Find Full Text PDF

Bioadhesives and bioactive hydrogels for wound management.

J Control Release

January 2025

Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea. Electronic address:

Delayed wound healing remains a major challenge in biomedical research, often leading to complications such as scarring, acute trauma, and chronic diseases. Effective wound management is crucial for enhancing treatment outcomes, preventing complications, and promoting tissue regeneration. In response to this need, a variety of polymeric biomaterials have been developed.

View Article and Find Full Text PDF

Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability.

Int J Biol Macromol

January 2025

Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP).

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 10) in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types. DGRs are especially enriched in the human gut microbiome and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes.

View Article and Find Full Text PDF

Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation.

View Article and Find Full Text PDF

Evaluation of minced beef quality fortified with edible microalgae species during cryogenic storage.

Food Res Int

January 2025

Chemistry of Natural Compounds Department, National Research Centre, 33 El-Behouth St, Dokki-Giza 12622, Egypt. Electronic address:

The aim of this study is to evaluate the effect of some microalgae species adding with different forms on minced beef meat shelf life during cryogenic storage for 13 days. Chlorella vulgaris and Arthrospira platensis are chosen because of their safety and high nutritional value. Microalgae nanoparticles with their different forms have been prepared by using emulsification solvent evaporation method.

View Article and Find Full Text PDF

Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy.

Biomaterials

January 2025

Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China. Electronic address:

T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors.

View Article and Find Full Text PDF

Riveting Nucleation Enabled Long Cycling Life Calcium Metal Anodes.

Adv Mater

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.

Calcium metal batteries with high capacity and low cost are promising alternatives to Li-ion batteries for large-scale energy storage. However, its development is crucially impeded by the irreversible Ca metal anode, which is highly associated with uncontrollable Ca plating/stripping. Here, we report a new riveting strategy to regulate the nucleation and growth of a Ca metal anode in the 3D structure of a carbon nanotube film (CNF) by introducing in situ-formed Na metal mediators.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) exhibit unique properties and potential applications when reduced to one-dimensional (1D) nanoribbons (NRs), owing to quantum confinement and high edge densities. However, effective growth methods for self-aligned TMD NRs are still lacking. We demonstrate a versatile approach for lattice-guided growth of dense, aligned MoS NR arrays via chemical vapor deposition (CVD) on anisotropic sapphire substrates, without tailored surface steps.

View Article and Find Full Text PDF

Bio-Orchestration of Cellular Organization and Human-Preferred Sensory Texture in Cultured Meat.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.

For cultured meat to effectively replace traditional meat, it is essential to develop scaffolds that replicate key attributes of real meat, such as taste, nutrition, flavor, and texture. However, one of the significant challenges in replicating meat characteristics with scaffolds lies in the considerable gap between the stiffness preferred by cells and the textural properties desired by humans. To address this issue, we focused on the microscale environment conducive to cell growth and the macro-scale properties favored by humans.

View Article and Find Full Text PDF

Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries.

ACS Nano

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China.

The utilization of electrolyte additives has been regarded as an efficient strategy to construct dendrite-free aqueous zinc-ion batteries (AZIBs). However, the blurry screening criteria and time-consuming experimental tests inevitably restrict the application prospect of the electrolyte additive strategy. With the rise of artificial intelligence technology, machine learning (ML) provides an avenue to promote upgrading of energy storage devices.

View Article and Find Full Text PDF
Article Synopsis
  • Aplastic anemia (AA) is a serious blood condition with few treatment options, characterized by halted blood cell production and increased cell death due to oxidative stress.
  • Researchers discovered unique carbon dots derived from donkey-hide gelatin (G-CDs) that can stimulate blood cell production and reduce oxidative stress, effectively promoting the recovery of blood cells in AA.
  • Administered to AA mice after chemotherapy, G-CDs significantly increased red blood cell levels and improved overall blood function more effectively than the current treatment, erythropoietin (EPO), without negative side effects.
View Article and Find Full Text PDF

Antimicrobial Activity of Nano-GeO/CTAB Complex Against Fungi and Bacteria Isolated from Paper.

Int J Mol Sci

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Microbial attack, particularly fungal degradation of cellulose, is a leading cause of paper damage. To address fungal spores and the rising concern of microbial drug resistance, a nano-Germanium dioxide (GeO)/cetyltrimethylammonium bromide (CTAB) complex (nano-GeO/CTAB complex) with potent antibacterial properties was synthesized. Its inhibitory effects were evaluated against bacteria, including Gram-positive and Gram-negative , as well as fungi isolated from paper ( spp.

View Article and Find Full Text PDF