858 results match your criteria: "Center for Human Immunology[Affiliation]"

Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.

View Article and Find Full Text PDF

Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS.

View Article and Find Full Text PDF

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

Myeloid malignancies are heterogenous disorders characterized by distinct molecular drivers but share convergence of oncogenic signaling pathways and propagation by ripe pro-inflammatory niches. Here, we establish a comprehensive transcriptional atlas across the spectrum of myeloproliferative neoplasms (MPN) and secondary acute myeloid leukemia (sAML) through RNA-sequencing of 158 primary samples encompassing CD34+ hematopoietic stem/progenitor cells and CD14+ monocytes. Supported by mass cytometry (CyTOF) profiling, we reveal aberrant networks of PI3K/AKT/mTOR signalling and NFκB-mediated hyper-inflammation.

View Article and Find Full Text PDF

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also play a key role in PD-1 directed immunotherapy. These PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells, also referred to as precursors of exhausted T cells, have a distinct program that allows them to adapt to chronic antigen stimulation. Using the mouse model of chronic LCMV infection we found that virus specific stem-like CD8+ T cells are generated early (day 5) during chronic infection suggesting that this crucial fate commitment occurs irrespective of infection outcome.

View Article and Find Full Text PDF

We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity.

View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.

View Article and Find Full Text PDF

The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection.

View Article and Find Full Text PDF

Interleukin-2-secreting T helper cells promote extra-follicular B cell maturation via intrinsic regulation of a B cell mTOR-AKT-Blimp-1 axis.

Immunity

December 2024

Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA. Electronic address:

During antigen-driven responses, B cells can differentiate at extra-follicular (EF) sites or initiate germinal centers (GCs) in processes that involve interactions with T cells. Here, we examined the roles of interleukin (IL)-2 secreted by T helper (Th) cells during cognate interactions with activated B cells. IL-2 boosted the expansion of EF plasma cells and the secretion of low-mutated immunoglobulin G (IgG).

View Article and Find Full Text PDF

Elimination of latent HIV-1 is a major goal of AIDS research but the host factors determining the size of these reservoirs are poorly understood. Here, we investigated whether differences in host gene expression modulate the size of the HIV-1 reservoir during suppressive ART. Peripheral blood mononuclear cells (PBMC) from fourteen individuals initiating ART during acute infection who demonstrated effective viral suppression but varying magnitude of total HIV-1 DNA were characterized by single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

RSK1 dependency in FLT3-ITD acute myeloid leukemia.

Blood Cancer J

November 2024

Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Internal tandem duplications (ITD) in fms-like tyrosine kinase 3 (FLT3) represent the most common genetic alteration in de novo acute myeloid leukemia (AML). Here, we identify ribosomal protein s6 kinase a1 (RSK1) as a core dependency in FLT3-ITD AML and unveil the existence of crucial bi-directional regulation. RSK1 perturbation resulted in marked apoptosis and abrogated phosphorylation of FLT3 and associated downstream signaling cascades in FLT3-ITD AML cell lines.

View Article and Find Full Text PDF

Improving efficacy of in vivo therapy of sickle cell disease by hijacking natural biology of hematopoietic stem cells.

Mol Ther

December 2024

Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA. Electronic address:

View Article and Find Full Text PDF

A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice.

Cell Host Microbe

December 2024

Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains.

View Article and Find Full Text PDF

Sialylated IgG induces the transcription factor REST in alveolar macrophages to protect against lung inflammation and severe influenza disease.

Immunity

January 2025

Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:

While most respiratory viral infections resolve with little harm to the host, severe symptoms arise when infection triggers an aberrant inflammatory response that damages lung tissue. Host regulators of virally induced lung inflammation have not been well defined. Here, we show that enrichment for sialylated, but not asialylated immunoglobulin G (IgG), predicted mild influenza disease in humans and was broadly protective against heterologous influenza viruses in a murine challenge model.

View Article and Find Full Text PDF

The epigenetic trajectory of type 1 regulatory T cells.

Elife

November 2024

Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States.

The epigenome of T follicular helper cells prepares them for conversion into type 1 regulatory T cells.

View Article and Find Full Text PDF

Background: Neoantigen vaccines can induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes and performed a phase 1 clinical trial in triple-negative breast cancer patients with persistent disease on surgical pathology following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence.

Methods: Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing.

View Article and Find Full Text PDF

Ross River virus (RRV) and other alphaviruses cause chronic musculoskeletal syndromes that are associated with viral persistence, which suggests deficits in immune clearance mechanisms, including CD8 T-cell responses. Here, we used a recombinant RRV-gp33 that expresses the immunodominant CD8 T-cell epitope of lymphocytic choriomeningitis virus (LCMV) to directly compare responses with a virus, LCMV, that strongly induces antiviral CD8 T cells. After footpad injection, we detected fewer gp33-specific CD8 T cells in the draining lymph node (DLN) after RRV-gp33 than LCMV infection, despite similar viral RNA levels in the foot.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine.

View Article and Find Full Text PDF

Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19.

Sci Transl Med

November 2024

Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA.

Preexisting anti-interferon-α (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening COVID-19. However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 129 donors spanning mild to severe COVID-19.

View Article and Find Full Text PDF

Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination.

Cell Rep

November 2024

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Article Synopsis
  • Recent research indicates that both neutralizing and non-neutralizing antibodies can help protect against severe COVID-19, even when non-neutralizing antibodies don’t directly neutralize the virus.* -
  • Non-neutralizing antibodies may recruit immune cells to help clear infected cells and often bind to virus parts that are conserved across different variants.* -
  • The study analyzed 42 human monoclonal antibodies from vaccinated individuals, finding that some non-neutralizing antibodies can provide protection in animal models, highlighting their potential role in immunity.*
View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer (BC) has distinct molecular subtypes influenced by different cell origins, yet the transcriptional networks for these subtypes are not well understood.
  • This study utilized advanced techniques on 61 samples from 37 BC patients to reveal how gene expression and chromatin accessibility connect BC subtypes to their likely cells of origin.
  • Key transcription factors BHLHE40 and KLF5 were found to play crucial roles in luminal and basal-like tumors, respectively, and exhausted CD8 T cells were linked to immune dysfunction in basal-like BC, showcasing the potential of single-cell level analysis in understanding cancer lineages.
View Article and Find Full Text PDF

Despite the presence of strategically positioned anatomical barriers designed to protect the central nervous system (CNS), it is not entirely isolated from the immune system. In fact, it remains physically connected to, and can be influenced by, the peripheral immune system. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding question.

View Article and Find Full Text PDF