4 results match your criteria: "Center for High Energy X-ray Sciences (CHEXS)[Affiliation]"

Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of dinitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at noncryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities.

View Article and Find Full Text PDF

Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of di-nitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at non-cryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities.

View Article and Find Full Text PDF

As continuing discoveries highlight the surprising abundance and resilience of deep ocean and subsurface microbial life, the effects of extreme hydrostatic pressure on biological structure and function have attracted renewed interest. Biological small-angle X-ray scattering (BioSAXS) is a widely used method of obtaining structural information from biomolecules in solution under a wide range of solution conditions. Due to its ability to reduce radiation damage, remove aggregates, and separate monodisperse components from complex mixtures, size-exclusion chromatography-coupled SAXS (SEC-SAXS) is now the dominant form of BioSAXS at many synchrotron beamlines.

View Article and Find Full Text PDF

The Molecular Basis for Life in Extreme Environments.

Annu Rev Biophys

May 2021

Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.

Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments.

View Article and Find Full Text PDF