1,273 results match your criteria: "Center for Functional Materials[Affiliation]"

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Strong electron-phonon coupling in magic-angle twisted bilayer graphene.

Nature

December 2024

Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.

The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate.

View Article and Find Full Text PDF

The topological properties of gapped graphene have been explored for valleytronics applications. Prior transport experiments indicated their topological nature through large nonlocal resistance in Hall-bar devices, but the origin of this resistance was unclear. This study focused on dual-gate bilayer graphene (BLG) devices with naturally cleaved edges, examining how edge-etching with an oxygen plasma process affects electron transport.

View Article and Find Full Text PDF

We present femtosecond pump-probe measurements of neutral and charged exciton optical response in monolayer MoSe to resonant photoexcitation of a given exciton state in the presence of 2D electron gas. We show that creation of charged exciton (X) population in a given K, K valley requires the capture of available free carriers in the opposite valley and reduces the interaction of neutral exciton (X) with the electron Fermi sea. We also observe spectral broadening of the X transition line with the increasing X population caused by efficient scattering and excitation induced dephasing.

View Article and Find Full Text PDF

Graphene's exceptional electronic mobility, gate-tunability, and contact transparency with superconducting materials make it ideal for exploring the superconducting proximity effect. However, the work function difference between graphene and superconductors causes unavoidable doping of graphene near contacts, forming a p-n junction in the hole-doped regime and reducing the contact transparency. This challenges the device implementation that exploits graphene's bipolarity.

View Article and Find Full Text PDF

Bimetallic organic framework derived Co-MoN/MoC catalyst for HER/OER bifunctional electrocatalytic reaction.

J Colloid Interface Sci

February 2025

Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Metal organic frameworks (MOFs) are widely used as precursors due to their tunable morphology and high specific surface area. Molybdenum nitride (MoN) and molybdenum carbide (MoC) are promising catalyst materials with electronic structures similar to the noble metal platinum. However, the preparation and modification of the composite systems comprising MoN and MoC are complex, often leading to significant agglomeration and limiting their application in various catalytic fields.

View Article and Find Full Text PDF

Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities.

View Article and Find Full Text PDF

The pairing of electrons is ubiquitous in electronic systems featuring attractive inter-electron interactions, as exemplified in superconductors. Counterintuitively, it can also be mediated in certain circumstances by the repulsive Coulomb interaction alone. Quantum Hall (QH) Fabry-Pérot interferometers (FPIs) tailored in a two-dimensional electron gas under a perpendicular magnetic field have been argued to exhibit such an unusual electron pairing, seemingly without attractive interactions.

View Article and Find Full Text PDF

Refractory metal-based MXenes refer to MXenes with M as a refractory metal. Due to their high conductivity, large specific surface area, multiple active sites, high photothermal conversion efficiency, adjustable surface groups, and controllable nanolayer spacing, they hold broad application prospects in various fields such as photoelectrocatalysis, biomedicine, water treatment, electromagnetic shielding, and sensors. The unique physical properties of refractory metal-based MXenes are related to their electronic and crystal structures.

View Article and Find Full Text PDF

Two-dimensional (2D) materials serve as exceptional platforms for controlled second-harmonic generation (SHG). Current approaches to SHG control often depend on nonresonant conditions or symmetry breaking via single-gate control. Here, we employ dual-gate bilayer WSe to demonstrate an SHG enhancement concept that leverages strong exciton resonance and a layer-dependent exciton-polaron effect.

View Article and Find Full Text PDF

Excitons in two-dimensional (2D) semiconductors are particularly exciting, as reduced screening and dimensional confinement foster their pronounced many-body interactions. Optical pumping is typically used to create excitons so as to study their properties, but at the same time such pumping can also create unbound charge carriers. This makes experimental determination of the exciton-exciton interactions difficult.

View Article and Find Full Text PDF

Realizing one-dimensional moiré chains with strong electron localization in two-dimensional twisted bilayer WSe.

Proc Natl Acad Sci U S A

November 2024

Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China.

Two-dimensional (2D) moiré systems based on twisted bilayer graphene and transition metal dichalcogenides provide a promising platform to investigate emergent phenomena driven by strong electron-electron interactions in partially filled flat bands. A natural question arises: Is it possible to expand the 2D correlated moiré physics to one-dimensional (1D) that electron-electron correlation is expected to be further enhanced? This requires selectively doping of 1D moiré chain, which seems to be not within the grasp of today's technology. Therefore, an experimental demonstration of the 1D moiré chain with partially filled electronic states remains absent.

View Article and Find Full Text PDF

Although ethyl formate (EF) fumigant and low temperature applications are widely used for pest management, studies related to their mechanisms of action and subsequent metabolic changes in Drosophila suzukii models are still unclear. In this study, a comparative metabolome analysis was performed to investigate the major metabolites modified by EF and low temperature and how they are related to and affect insect physiology. Most of the identified metabolites function in metabolic pathways related to the biosynthesis of amino acids, nucleotides and cofactors.

View Article and Find Full Text PDF

The mechanisms of action of phosphine are diverse and include neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is unclear. : Comparative metabolomics is suitable for investigating the response of the spotted-wing fly to exposure toward a combination of cold stimuli and fumigant PH. : Under this combined exposure, 52 metabolites exhibiting significant differences in stress were identified and their physiological roles were analyzed in the metabolic pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research shows that cobaltites may serve as a valuable avenue for studying Kitaev physics in honeycomb structures and the Ising model in weakly linked chains.
  • The study investigates the magnetic properties of SrCoGeO using neutron scattering, ab initio methods, and linear spin-wave theory to propose a modified Kitaev model for the interactions in this material.
  • Findings indicate that external magnetic fields can shift the material's magnetic ordering and suggest modified pyroxenes could offer new insights into Kitaev physics.
View Article and Find Full Text PDF

Correlated topological flat bands in rhombohedral graphite.

Proc Natl Acad Sci U S A

October 2024

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.

Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence.

View Article and Find Full Text PDF

A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells.

Acta Biomater

November 2024

Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China. Electronic address:

Article Synopsis
  • Injectable hydrogels (IHs) can effectively promote the repair of infected bone defects, but challenges exist in providing antibacterial and osteo-inductive properties while maintaining mechanical integrity.
  • The newly developed AOHA-RA/Lap nanocomposite IH utilizes two types of reversible cross-links for enhanced injectability and self-recovery, and it can release active compounds for over 10 days.
  • In studies, this hydrogel showed strong antibacterial effects against common bacteria and effectively induced necessary immune responses and bone cell differentiation, significantly improving healing in infected bone defect models without major side effects.
View Article and Find Full Text PDF

Designing Contact Independent High-Performance Low-Cost Flexible Electronics.

Adv Mater

November 2024

Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA.

Organic semiconductors enable low-cost solution processing of optoelectronic devices on flexible substrates. Their use in contemporary applications, however, is sparse due to persistent challenges in achieving the requisite performance levels in a reliable and reproducible manner. A critical bottleneck is the inefficiency associated with charge injection.

View Article and Find Full Text PDF

Viscous terahertz photoconductivity of hydrodynamic electrons in graphene.

Nat Nanotechnol

October 2024

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.

Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively.

View Article and Find Full Text PDF

Time reversal symmetry breaking in superconductors, resulting from external magnetic fields or spontaneous magnetization, often leads to unconventional superconducting properties. In this way, an intrinsic phenomenon called the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state may be realized by the Zeeman effect. Here, we construct the FFLO state in an artificial CrOCl/NbSe van der Waals (vdW) heterostructure by utilizing the superconducting proximity effect of NbSe flakes.

View Article and Find Full Text PDF

Robust flat bands in twisted trilayer graphene moiré quasicrystals.

Nat Commun

September 2024

Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, China.

Moiré structures formed by twisting three layers of graphene with two independent twist angles present an ideal platform for studying correlated quantum phenomena, as an infinite set of angle pairs is predicted to exhibit flat bands. Moreover, the two mutually incommensurate moiré patterns among the twisted trilayer graphene (TTG) can form highly tunable moiré quasicrystals. This enables us to extend correlated physics in periodic moiré crystals to quasiperiodic systems.

View Article and Find Full Text PDF

The electronic properties of moiré heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs.

View Article and Find Full Text PDF

Emergent Optical Resonances in Atomically Phase-Patterned Semiconducting Monolayers of WS.

ACS Photonics

September 2024

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States.

Atomic-scale control of light-matter interactions represents the ultimate frontier for many applications in photonics and quantum technology. Two-dimensional semiconductors, including transition-metal dichalcogenides, are a promising platform to achieve such control due to the combination of an atomically thin geometry and convenient photophysical properties. Here, we demonstrate that a variety of durable polymorphic structures can be combined to generate additional optical resonances beyond the standard excitons.

View Article and Find Full Text PDF

The moiré superconductor magic-angle twisted bilayer graphene (MATBG) shows exceptional properties, with an electron (hole) ensemble of only ~10 carriers per square centimeter, which is five orders of magnitude lower than traditional superconductors (SCs). This results in an ultralow electronic heat capacity and a large kinetic inductance of this truly two-dimensional SC, providing record-breaking parameters for quantum sensing applications, specifically thermal sensing and single-photon detection. To fully exploit these unique superconducting properties for quantum sensing, here, we demonstrate a proof-of-principle experiment to detect single near-infrared photons by voltage biasing an MATBG device near its superconducting phase transition.

View Article and Find Full Text PDF