866 results match your criteria: "Center for Emergent Matter Science (CEMS)[Affiliation]"

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules.

View Article and Find Full Text PDF

Realizing Strong and Robust Quasi-1D Superconductors via Multiorbital Chains: NaBe as an Example.

Phys Rev Lett

December 2024

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.

Quasi-one-dimensional (Q1D) systems are inherently unfavorable for superconductivity due to electronic instabilities and significant quantum fluctuations. This has led to a half-century-long pursuit of strong and robust Q1D superconductors. Herein, we propose an effective multiorbital chain approach that utilizes the interorbital self-doping to not only suppress the instability but also to position the Fermi level near the band edges.

View Article and Find Full Text PDF

For over a century, the Hall effect, a transverse effect under an out-of-plane magnetic field or magnetization, has been a cornerstone for magnetotransport studies and applications. Modern theoretical formulation based on the Berry curvature has revealed the potential that even an in-plane magnetic field can induce an anomalous Hall effect, but its experimental demonstration has remained difficult due to its potentially small magnitude and strict symmetry requirements. Here, we report observation of the in-plane anomalous Hall effect by measuring low-carrier density films of magnetic Weyl semimetal EuCd_{2}Sb_{2}.

View Article and Find Full Text PDF

Topological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal CdAs upon alloying the trivial semiconductor ZnAs.

View Article and Find Full Text PDF

Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.

View Article and Find Full Text PDF

Magnetic information is usually stored in ferromagnets, where the ↑ and ↓ spin states are distinguishable due to time-reversal symmetry breaking. These states induce opposite signs of the Hall effect proportional to magnetization, which is widely used for their electrical read-out. By contrast, conventional antiferromagnets with a collinear antiparallel spin configuration cannot host such functions, because of symmetry (time-reversal followed by translation t symmetry) and lack of macroscopic magnetization.

View Article and Find Full Text PDF

Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate's phase stiffness, thereby limiting critical temperatures - a phenomenon known as the BCS-BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (AC) that goes beyond the limits of the lattice BCS-BEC crossover.

View Article and Find Full Text PDF

Semiconductor spin qubits offer the potential to employ industrial transistor technology to produce large-scale quantum computers. Silicon hole spin qubits benefit from fast all-electrical qubit control and sweet spots to counteract charge and nuclear spin noise. However, the demonstration of a two-qubit interaction has remained an open challenge.

View Article and Find Full Text PDF

Spintronics based on ferromagnets has enabled the development of microwave oscillators and diodes. To achieve even faster operation, antiferromagnets hold great promise despite their challenging manipulation. So far, controlling antiferromagnetic order with microwave currents remains elusive.

View Article and Find Full Text PDF

Circularly polarized light emission from encapsulated aggregation-induced emission achiral luminogen within the supramolecular helical nanofilament networks.

J Colloid Interface Sci

November 2024

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Article Synopsis
  • Circularly polarized light emission (CPLE) materials are gaining interest for applications in areas like spintronics.
  • The study demonstrates a new method for activating CPLE in achiral luminogens by utilizing phase separation with helical filaments, which enhances their properties.
  • The chiral environment created by nanoscale spaces allows the helical filaments to impart chirality to the otherwise CPLE-inactive luminogens, making this approach a simpler alternative to complex chemical synthesis.
View Article and Find Full Text PDF

Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets-LnSn (Ln = Dy, Tb)-by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice.

View Article and Find Full Text PDF

The recent prediction of the new magnetic class, altermagnetism, has drawn considerable interest, fueled by its potential to host novel phenomena and to be utilized in next-generation spintronics devices. Among many promising candidates, rutile RuO is a prototypical candidate for realizing the prospects of altermagnetism. However, the experimental studies on RuO are still in the early stages.

View Article and Find Full Text PDF

The synthesis and stabilization of Pd nanoclusters on a support, as well as simultaneously achieving optimal catalytic activity, remain challenging tasks. Functionalizing the support surface with specific ligands offers a promising solution, but it often requires carefully balancing trade-offs between the reaction yield and catalyst stability. Here, we used two different ligands (propylamine and propylthiol) to functionalize the layered silicate's interlayer surface for Pd nanocluster synthesis and stabilization.

View Article and Find Full Text PDF

Excitons are fundamental quasiparticles that are ubiquitous in photoexcited semiconductors and insulators. Despite causing a sharp and strong photoabsorption near the interband absorption edge, charge-neutral excitons do not yield photocurrent in conventional photovoltaic processes unless dissociated into free charge carriers. Here, we experimentally demonstrate that excitons can directly contribute to photocurrent generation through a nonlinear light-matter interaction in a noncentrosymmetric semiconductor CuI.

View Article and Find Full Text PDF

We investigate thermomagnetic transport in an ultracold atomic system with two ferromagnets linked via a magnetic quantum point contact. Using the nonequilibrium Green's function approach, we show a divergence in spin conductance and a slowing down of spin relaxation that manifest in the weak effective-Zeeman-field limit. These anomalous spin dynamics result from the magnonic critical point at which magnons become gapless due to spontaneous magnetization.

View Article and Find Full Text PDF

Ultrafast electron diffraction/microscopy technique enables us to investigate the nonequilibrium dynamics of crystal structures in the femtosecond-nanosecond time domain. However, the electron diffraction intensities are in general extremely sensitive to the excitation errors (i.e.

View Article and Find Full Text PDF

Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (-) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored.

View Article and Find Full Text PDF

Ferroelectric Smectic C Liquid Crystal Phase with Spontaneous Polarization in the Direction of the Director.

Adv Sci (Weinh)

December 2024

Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan.

In the previous study, the existence of an unidentified ferroelectric smectic phase is demonstrated in the low-temperature region of the ferroelectric smectic A phase, where the layer spacing decreases with decreasing temperature. In the present study, the phase is identified by taking 2D X-ray diffraction images of a magnetically oriented sample while allowing it to rotate and constructed a 3D reciprocal space with the sample rotation angle as the third axis for the whole picture of the reciprocal lattice vectors originating from the smectic structure. Consequently, circular diffraction images are obtained when the reciprocal lattice vectors are evenly distributed on the conical surface at a certain inclination angle in the reciprocal space.

View Article and Find Full Text PDF

Intercalation of guest ions into a van der Waals (vdW) gap in layered materials is a powerful route to create novel material phases and functionalities. Ionic gating is a technique to control the motions and configuration of ions for both intercalation and surface electrostatic doping. The advance of ionic gating enables the probe of dynamics of ion diffusion, carrier doping, and transport properties.

View Article and Find Full Text PDF

Selective Control of Electric Charge of Weyl Fermions in Pyrochlore Iridates.

Adv Mater

December 2024

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.

Weyl fermions can exhibit exotic phenomena due to their magnetic charge in momentum space, while Weyl nodes are usually located away from Fermi energy, which forms electron or hole pockets as the electric charges. Previous studies have mostly focused on the magnetic charge, however, the electric charges are rarely explored. Here, the intriguing Hall responses arising from the interplay between magnetic and electric charges of Weyl fermions in pyrochlore iridates are reported.

View Article and Find Full Text PDF

A deep equivariant neural network approach for efficient hybrid density functional calculations.

Nat Commun

October 2024

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China.

Article Synopsis
  • Hybrid density functional calculations are crucial for accurately understanding electronic structures but are limited by high computational costs.
  • The DeepH-hybrid method utilizes a deep neural network to efficiently learn the hybrid-functional Hamiltonian based on material structure, eliminating the need for slow iterative calculations.
  • This approach successfully applies to large-scale materials, including an investigation of how exact exchange impacts flat bands in magic-angle twisted bilayer graphene, pushing the boundaries of electronic structure research using deep learning.
View Article and Find Full Text PDF

Exotic Spin Excitations in a Polar Magnet VOSe_{2}O_{5}.

Phys Rev Lett

September 2024

Department of Applied Physics and Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656, Japan.

Magnetic resonance dynamics has been studied for a polar magnet VOSe_{2}O_{5}, which hosts several nontrivial magnetic phases including Néel-type skyrmion lattice (SkL). In both cycloidal and SkL spin states, two excitation modes active to oscillating magnetic field B_{ν}⊥c and one mode active to B_{ν}∥c are identified. The subsequent micromagnetic simulations well reproduce the observed selection rules and relative resonance frequencies, which allows the unambiguous assignment of the spin oscillation manner for each mode.

View Article and Find Full Text PDF