13 results match your criteria: "Center for Cellular and Molecular Therapy - CTCMol[Affiliation]"

Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2.

Nitric Oxide

July 2024

Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. Electronic address:

Epidemiological studies show a strong correlation between diabetes and the increased risk of developing different cancers, including melanoma. In the present study, we investigated the impact of a streptozotocin (STZ)-induced hyperglycemic environment on B16F10-Nex2 murine melanoma development. Hyperglycemic male C57Bl/6 mice showed increased subcutaneous tumor development, partially inhibited by metformin.

View Article and Find Full Text PDF

Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide.

Nitric Oxide

March 2023

Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil. Electronic address:

Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma.

View Article and Find Full Text PDF

Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations.

View Article and Find Full Text PDF

The epithelial/mesenchymal transition (EMT) is commonly associated with tumor metastasis. Oxidative and nitrosative stress is maintained in cancer cells and is involved in the EMT. Cancer cells are endowed with high levels of enzymatic and nonenzymatic antioxidants, which counteract the effects of oxidative and nitrosative stress.

View Article and Find Full Text PDF

Caspase-8 and FADD: Where Cell Death and Inflammation Collide.

Immunity

June 2020

Center for Cellular and Molecular Therapy (CTCMol), Federal University of São Paulo (UNIFESP), São Paulo, Brazil. Electronic address:

Caspase-8 is a master regulator of cell death pathways, although its regulation during inflammation remains elusive. Using elegant mouse genetic approaches, Schwarzer et al. and Tummers et al.

View Article and Find Full Text PDF

Cancer development is closely related to chronic inflammation, which is associated with identifiable markers of tumor progression, such as uncontrolled cell proliferation, angiogenesis, genomic instability, chemotherapeutic resistance, and metastases. Redox processes mediated by reactive oxygen species (ROS) and nitric oxide (NO) within the inflammatory tumor microenvironment play an essential role in directly influencing intercellular and intracellular signaling. These reactive species originating in the cancer cell or its microenvironment, mediate the epithelial-mesenchymal transition (EMT) and the mesenchymal-epithelial transition (MET).

View Article and Find Full Text PDF

Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis.

View Article and Find Full Text PDF

Accumulating mutations may drive cells into the acquisition of abnormal phenotypes that are characteristic of cancer cells. Cancer cells feature profound alterations in proliferation programs that result in a new population of cells that overrides normal tissue construction and maintenance programs. To achieve this goal, cancer cells are endowed with up regulated survival signaling pathways.

View Article and Find Full Text PDF

The Ig V complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor.

Peptides

November 2016

Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Recepta Biopharma, São Paulo, SP, Brazil. Electronic address:

The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines.

View Article and Find Full Text PDF

Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2.

View Article and Find Full Text PDF

The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility.

View Article and Find Full Text PDF

Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R.

View Article and Find Full Text PDF

Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras-ERK1/2 MAP Kinases signaling pathway.

View Article and Find Full Text PDF