129 results match your criteria: "Center for Cancer Research and Therapeutic Development[Affiliation]"

Id helix-loop-helix (HLH) proteins (Id1-4) bind E protein bHLH transcription factors, preventing them from forming active transcription complexes that drive changes in cell states. Id proteins are primarily expressed during development to inhibit differentiation, but they become re-expressed in adult tissues in diseases of the vasculature and cancer. We show that the genetic loss of Id1/Id3 reduces ocular neovascularization in mouse models of wet age-related macular degeneration (AMD) and retinopathy of prematurity (ROP).

View Article and Find Full Text PDF

Creosote bush (; LT) leaves extracts were tested for their potential efficacy to mitigate cellular oxidative stress on human SH-SY5Y cells. Here, the differential nuclear staining assay, a bioimager system, and flow cytometric protocols, concurrently with several specific chemicals, were used to measure the percentage of cell viability and several facets implicated in the cytoprotective mechanism of LT extracts. Initially, three LT extracts, prepared with different solvents, ethanol, ethanol:water (e/w), and water, were tested for their capacity to rescue the viability of cells undergoing aggressive HO-induced oxidative stress.

View Article and Find Full Text PDF

Peroxidasin (PXDN), a human homolog of PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells.

View Article and Find Full Text PDF

Cancer-bone microenvironmental interactions promotes STAT3 signaling.

Mol Carcinog

August 2019

Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.

Prostate cancer (PCa) patients' mortality is mainly attributed to complications caused by metastasis of the tumor cells to organs critical for survival, such as bone. We hypothesized that PCa cell-bone interactions would promote paracrine signaling. A panel of PCa cell lines were cocultured with hydroxyapatite ([HA]; inorganic component of bone) of different densities.

View Article and Find Full Text PDF

Triple-Negative Breast Cancers (TNBCs) are the most difficult to treat subtype of breast cancer and are often associated with high nuclear expression of Snail and Cathepsin L (Cat L) protease. We have previously shown that Snail can increase Cat L expression/activity in prostate and breast cancer cells. This study investigated the role of CUX1 (a downstream substrate of Cat L) in TNBC.

View Article and Find Full Text PDF

Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells.

Cancer Lett

April 2019

Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA. Electronic address:

JunD, a member of the AP-1 family, is essential for cell proliferation in prostate cancer (PCa) cells. We recently demonstrated that JunD knock-down (KD) in PCa cells results in cell cycle arrest in G-phase concomitant with a decrease in cyclin D1, Ki67, and c-MYC, but an increase in p21 levels. Furthermore, the over-expression of JunD significantly increased proliferation suggesting JunD regulation of genes required for cell cycle progression.

View Article and Find Full Text PDF

During development of pancreatic cancer, alternatively activated macrophages contribute to fibrogenesis, pancreatic intraepithelial neoplasia (PanIN) lesion growth, and generation of an immunosuppressive environment. Here, we show that the immunomodulatory agent pomalidomide depletes pancreatic lesion areas of alternatively activated macrophage populations. Pomalidomide treatment resulted in downregulation of interferon regulatory factor 4, a transcription factor for M2 macrophage polarization.

View Article and Find Full Text PDF

Background: Prostate cancer carries emasculating symptoms and treatment effects. These symptoms and treatment effects impact a man's sexual function; a central-theme to masculinity. This study seeks to assess the impact of sexual function on perceptions of masculinity.

View Article and Find Full Text PDF

Association of Epithelial Mesenchymal Transition with prostate and breast health disparities.

PLoS One

March 2019

Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, United States of America.

African Americans (AA) have higher death rates due to prostate and breast cancer as compared to Caucasian Americans (CA), and few biomarkers have been associated with this disparity. In our study we investigated whether epithelial-mesenchymal transition (EMT) with a focus on Snail and Cathepsin L (Cat L), could potentially be two markers associated with prostate and breast health disparities. We have previously shown that Snail can increase Cat L protein and activity in prostate and breast cancer.

View Article and Find Full Text PDF

High mobility group A2 (HMGA2) promotes EMT via MAPK pathway in prostate cancer.

Biochem Biophys Res Commun

September 2018

Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States. Electronic address:

Studies have shown that High mobility group A2 (HMGA2), a non-histone protein, can promote epithelial-mesenchymal transition (EMT), which plays a critical role in prostate cancer progression and metastasis. Interestingly, full-length or wild-type HMGA2 and truncated (lacking the 3'UTR) HMGA2 isoforms are overexpressed in several cancers. However, there are no studies investigating the expression and differential roles of WT vs truncated HMGA2 isoforms in prostate cancer.

View Article and Find Full Text PDF

Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli.

View Article and Find Full Text PDF

Macrophage infiltrations (inflammation) are associated with prostate disorders such as prostatitis, prostatic hyperplasia and prostate cancer. All prostate disorders have elevated cell proliferation, and are initiated from normal prostate epithelial cells. To date, the mechanism of how macrophages regulate normal prostate epithelial cell proliferation remains largely unknown.

View Article and Find Full Text PDF

The essential role of WD repeat domain 77 in prostate tumor initiation induced by Pten loss.

Oncogene

July 2018

Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, 30314, USA.

Prostate cancer is the most commonly diagnosed malignancy among men, but few genetic factors that drive prostate cancer initiation have been identified. The WD repeat domain 77 (Wdr77) protein is essential for cellular proliferation when localizes in the cytoplasm of epithelial cells at the early stage of prostate development. In the adult prostate, it is transported into the nucleus and functions as a co-regulator of the androgen receptor to promote cellular differentiation and prostate function.

View Article and Find Full Text PDF

Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro.

View Article and Find Full Text PDF

Epidemiological studies show that the incidence and mortality rates of prostate cancer (PCa) are significantly higher in African-American (AA) men when compared with Caucasian (CA) men in the United States. Transforming growth factor β (TGFβ) signaling pathway is linked to health disparities in AAs. Recent studies suggest a role of TGFβ3 in cancer metastases and its effect on the migratory and invasive behavior; however, its role in PCa in AA men has not been studied.

View Article and Find Full Text PDF

Design, synthesis, and evaluation of the antiproliferative activity of hydantoin-derived antiandrogen-genistein conjugates.

Bioorg Med Chem

May 2018

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA. Electronic address:

Androgen receptor (AR) signaling is vital to the viability of all forms of prostate cancer (PCa). With the goal of investigating the effect of simultaneous inhibition and depletion of AR on viability of PCa cells, we designed, synthesized and characterized the bioactivities of bifunctional agents which incorporate the independent cancer killing properties of an antiandrogen and genistein, and the AR downregulation effect of genistein within a single molecular template. We observed that a representative conjugate, 9b, is much more cytotoxic to both LNCaP and DU145 cells relative to the antiandrogen and genistein building blocks as single agents or their combination.

View Article and Find Full Text PDF

Background: Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers.

View Article and Find Full Text PDF

G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis.

View Article and Find Full Text PDF

Research on the aryl hydrocarbon receptor (AhR) has largely focused on its activation by various environmental toxins. Consequently, only limited inferences have been made regarding its constitutive activity in the absence of an exogenous ligands. Evidence has shown that AhR is constitutively active in advanced prostate cancer cell lines which model castration resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer.

Oncotarget

October 2017

Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA.

Article Synopsis
  • Researchers are studying how some prostate cancer cells keep growing even after treatments that usually stop their growth, which is called castration-resistant prostate cancer (CRPC).
  • They found that certain proteins (STAT3 and STAT5A) are present in most advanced CRPC cases, and that these proteins may help the cancer grow.
  • A medication called pimozide helped slow down cancer cell growth and could be part of new treatments that target these proteins along with other cancer pathways.
View Article and Find Full Text PDF

Mapping the STK4/Hippo signaling network in prostate cancer cell.

PLoS One

October 2017

Department of Biological Sciences, the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America.

Dysregulation of MST1/STK4, a key kinase component of the Hippo-YAP pathway, is linked to the etiology of many cancers with poor prognosis. However, how STK4 restricts the emergence of aggressive cancer remains elusive. Here, we investigated the effects of STK4, primarily localized in the cytoplasm, lipid raft, and nucleus, on cell growth and gene expression in aggressive prostate cancer.

View Article and Find Full Text PDF

Snail transcription factor NLS and importin β1 regulate the subcellular localization of Cathepsin L and Cux1.

Biochem Biophys Res Commun

September 2017

Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA. Electronic address:

Several recent studies have highlighted an additional unexpected localization and site of action for Cathepsin L (Cat L) protease within the nucleus in breast, colon and prostate cancer, however, its role in the nucleus was unclear. It was proposed to mediate proteolytic processing of the transcription factor CCAAT-displacement protein/cut homeobox transcription factor (Cux1) from the full-length p200 isoform to generate the p110 and p90 isoforms, of which the p110 isoform was shown to act as a cell cycle regulator to accelerate entry into the S phase. The p110 isoform has also been shown to bind to the promoter regions of Snail and E-cadherin to activate Snail and inactivate E-cadherin transcription, thus promoting epithelial mesenchymal transition (EMT).

View Article and Find Full Text PDF

Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors.

View Article and Find Full Text PDF

Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells.

PLoS One

September 2017

Department of Microbiology and Immunology, Biomedical Proteomics Facility, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico, United States of America.

Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen-depleted environment of the prostate. In recent years, targeting multiple chaperones and co-chaperones (e.g.

View Article and Find Full Text PDF