65 results match your criteria: "Center for Advanced Brain Tumor Treatment[Affiliation]"

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets.

View Article and Find Full Text PDF

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV.

View Article and Find Full Text PDF

Viral encephalitis and glioblastoma are both relatively rare conditions with poor prognoses. While the clinical and radiographic presentations of these diseases are often distinctly different, viral encephalitis can sometimes masquerade as glioblastoma. Rarely, glioblastoma can also be misdiagnosed as viral encephalitis.

View Article and Find Full Text PDF

Target Population: These recommendations apply to adult patients with new or recurrent solitary or multiple brain metastases from solid tumors as detailed in each section.

Question 1: Should patients with newly diagnosed metastatic brain tumors undergo stereotactic radiosurgery (SRS) compared with other treatment modalities?

Recommendations: Level 3: SRS is recommended as an alternative to surgical resection in solitary metastases when surgical resection is likely to induce new neurological deficits, and tumor volume and location are not likely to be associated with radiation-induced injury to surrounding structures. Level 3: SRS should be considered as a valid adjunctive therapy to supportive palliative care for some patients with brain metastases when it might be reasonably expected to relieve focal symptoms and improve functional quality of life in the short term if this is consistent with the overall goals of the patient.

View Article and Find Full Text PDF

Aim: Evaluation of the Nativis Voyager device in patients with recurrent glioblastoma (rGBM).

Materials & Methods: Voyager is a noninvasive, nonthermal, nonionizing and portable investigational device which delivers ultra-low radio frequency energy (ulRFE) that uses a magnetic field to penetrate tissues to alter specific biologic functions within cells. Patients with rGBM were treated with Voyager alone (V) or Voyager in combination with standard of care (V + SoC).

View Article and Find Full Text PDF

Numerous types of inhibitory neurons sculpt the performance of human neocortical circuits, with each type exhibiting a constellation of subcellular phenotypic features in support of its specialized functions. Axonal myelination has been absent among the characteristics used to distinguish inhibitory neuron types; in fact, very little is known about myelinated inhibitory axons in human neocortex. Here, using array tomography to analyze samples of neurosurgically excised human neocortex, we show that inhibitory myelinated axons originate predominantly from parvalbumin-containing interneurons.

View Article and Find Full Text PDF

Optimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet this challenge, here we profile DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n = 96). Using supervised machine learning and integration of DNA methylomes from normal, primary, and metastatic tumor specimens (n = 1860), we unravel epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically relevant subtypes.

View Article and Find Full Text PDF

Brain metastases (BM) are one the most lethal and poorly managed clinical complications in cancer patients. These secondary tumors represent the most common intracranial neoplasm in adults, most frequently originating from lung cancer, breast cancer, and cutaneous melanoma. In primary brain tumors, such as gliomas, recent advances in DNA methylation profiling have allowed for a comprehensive molecular classification.

View Article and Find Full Text PDF

Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HCN1-subunit expression in excitatory neurons in human, but not mouse, supragranular layers.

View Article and Find Full Text PDF

Generating a comprehensive description of cortical networks requires a large-scale, systematic approach. To that end, we have begun a pipeline project using multipatch electrophysiology, supplemented with two-photon optogenetics, to characterize connectivity and synaptic signaling between classes of neurons in adult mouse primary visual cortex (V1) and human cortex. We focus on producing results detailed enough for the generation of computational models and enabling comparison with future studies.

View Article and Find Full Text PDF

Purpose: Gliomas, a genetically heterogeneous group of primary central nervous system tumors, continue to pose a significant clinical challenge. Discovery of chromosomal rearrangements involving kinase genes has enabled precision therapy, and improved outcomes in several malignancies.

Experimental Design: Positing that similar benefit could be accomplished for patients with brain cancer, we evaluated The Cancer Genome Atlas (TCGA) glioblastoma dataset.

View Article and Find Full Text PDF

Purpose: For glioblastoma (GBM), imaging response (IR) or pseudoprogression (PSP) is frequently observed after chemoradiation and may connote a favorable prognosis. With tumors categorized by the Cancer Genome Atlas Project (mesenchymal, classical, neural, and proneural) and by methylguanine-methyltransferase (MGMT) methylation status, we attempted to determine if certain genomic or molecular subtypes of GBM were specifically associated with IR or PSP.

Methods: Patients with GBM treated at two institutions were reviewed.

View Article and Find Full Text PDF

The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation.

View Article and Find Full Text PDF

An anatomic transcriptional atlas of human glioblastoma.

Science

May 2018

Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA.

Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor.

View Article and Find Full Text PDF

This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types.

View Article and Find Full Text PDF

Leptomeningeal Metastases.

Curr Treat Options Oncol

January 2018

Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA.

Treatment options for leptomeningeal metastases are expanding with greater tolerability and efficacy than in the past. Improved knowledge of molecular subtypes of some cancers can guide in choosing more effective therapeutic options; however, physicians should be mindful that these molecular types can be different in the central nervous system compared to the rest of the body. This is particularly true in breast and lung cancer, in which some patients now can live for many months or even years after diagnosis of leptomeningeal metastases.

View Article and Find Full Text PDF
Article Synopsis
  • Proper management of adult gliomas hinges on accurate histopathological diagnosis, but the tumor's heterogeneity can result in misdiagnosis and undergrading, particularly with biopsies.
  • A study of 146 patients with newly diagnosed gliomas utilized preoperative relative cerebral blood volume (rCBV) analysis alongside histopathology to evaluate predictions for overall survival and the risk of undergrading.
  • Results indicated that rCBV analysis effectively stratified patients into various risk groups for survival, highlighting the potential of elevated rCBV to identify cases that might be undergraded, thus suggesting rCBV can serve as a reliable predictor of survival alongside traditional grading.
View Article and Find Full Text PDF

Formation of metastases, also known as cancer dissemination, is an important stage of breast cancer (BrCa) development. KISS1 expression is associated with inhibition of metastases development. Recently we have demonstrated that BrCa metastases to the brain exhibit low levels of KISS1 expression at both mRNA and protein levels.

View Article and Find Full Text PDF

Human cytomegalovirus-mediated immunomodulation: Effects on glioblastoma progression.

Biochim Biophys Acta Rev Cancer

August 2017

Swedish Neuroscience Institute, Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA. Electronic address:

The presence of human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM), first established in 2002, has developed into an area of considerable interest and controversy. Numerous studies have found evidence of possible HCMV infection of GBM tumor cells as well as myriad onco- and immunomodulatory properties exhibited by HCMV antigens and transcripts, while recent reports have failed to detect HCMV particles in GBM and question the virus' role in tumor progression. This review highlights the known immunomodulatory properties of HCMV, independent of GBM infection status, that help drive the virus from peripheral blood into the vital tissues and subsequently dampen local immune response, assisting GBM tumors in evading immune surveillance and contributing to the disease's poor prognosis.

View Article and Find Full Text PDF

Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy.

J Neurooncol

June 2017

Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.

Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30-70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs.

View Article and Find Full Text PDF

We present a systems strategy that facilitated the development of a molecular signature for glioblastoma (GBM), composed of 33 cell-surface transmembrane proteins. This molecular signature, GBMSig, was developed through the integration of cell-surface proteomics and transcriptomics from patient tumors in the REMBRANDT (n = 228) and TCGA datasets (n = 547) and can separate GBM patients from control individuals with a Matthew's correlation coefficient value of 0.87 in a lock-down test.

View Article and Find Full Text PDF

Cytomegalovirus as an oncomodulatory agent in the progression of glioma.

Cancer Lett

January 2017

Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA 98122, USA; Institute of Experimental Diagnostic and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow, 115478, Russia. Electronic address:

Glioblastoma multiforme (GBM) is the most aggressive neoplastic brain tumor in humans with a median survival of less than 2 years. It is therefore critical to understand the mechanism of glioma progression and to identify future targets for intervention. We investigate the mechanisms of cytomegalovirus as an oncomodulatory agent implicated in glioma progression, as well as immunosuppression.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a rapidly progressive brain tumor with a median survival of 15-19 months. Therapeutic resistance and recurrence of the disease is attributed to cancer stem cells (CSC). Here, we report that CMV70-3P miRNA encoded by CMV increases GBM CSC stemness.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date, no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations, justifying the needs for additional CSC markers for better characterization.

View Article and Find Full Text PDF