969 results match your criteria: "CeMM-Research Center for Molecular Medicine[Affiliation]"

Targeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases.

View Article and Find Full Text PDF
Article Synopsis
  • Acute lymphoblastic leukemia (γδ T-ALL) is a rare and complex condition in children, prompting a study of 200 pediatric cases to identify its clinical and genetic characteristics.
  • The research revealed that very young children (under 3 years) with γδ T-ALL face a significantly high risk and display specific genetic changes, particularly involving STAG2 inactivation and LMO2 activation.
  • Importantly, their findings suggest that targeting DNA repair pathways linked to STAG2 inactivation with specific drugs could offer new treatment options and help classify patients based on their risk levels.
View Article and Find Full Text PDF

GPT-4 as a biomedical simulator.

Comput Biol Med

August 2024

Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währingerstraße 25a, 1090, Vienna, Austria. Electronic address:

Background: Computational simulation of biological processes can be a valuable tool for accelerating biomedical research, but usually requires extensive domain knowledge and manual adaptation. Large language models (LLMs) such as GPT-4 have proven surprisingly successful for a wide range of tasks. This study provides proof-of-concept for the use of GPT-4 as a versatile simulator of biological systems.

View Article and Find Full Text PDF

Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening.

View Article and Find Full Text PDF

Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective modulators can be challenging due to structural similarities in the sterol-binding domains. We report the discovery of potent and selective inhibitors of oxysterol-binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol-binding proteins by targeted degradation, led to a significant reduction in levels of Golgi-associated proteins.

View Article and Find Full Text PDF

Protein Binder Toolbox for Studies of Solute Carrier Transporters.

J Mol Biol

August 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. Electronic address:

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking.

View Article and Find Full Text PDF

Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies.

Gastroenterology

November 2024

Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. Electronic address:

Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance.

View Article and Find Full Text PDF

Pro-inflammatory CD4 T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (T17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis.

View Article and Find Full Text PDF

Zinc is an essential trace element that is involved in many biological processes and in cellular homeostasis. In pancreatic β-cells, zinc is crucial for the synthesis, processing, and secretion of insulin, which plays a key role in glucose homeostasis and which deficiency is the cause of diabetes. The accumulation of zinc in pancreatic cells is regulated by the solute carrier transporter SLC30A8 (or Zinc Transporter 8, ZnT8), which transports zinc from cytoplasm in intracellular vesicles.

View Article and Find Full Text PDF

Background & Aims: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD).

View Article and Find Full Text PDF

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.

View Article and Find Full Text PDF

Following the advent of direct-acting antivirals (DAAs), hepatitis C virus (HCV) infection can be cured in almost all infected patients. This has led to a number of clinical questions regarding the optimal management of the millions of patients cured of HCV. This position statement provides specific guidance on the appropriate follow-up after a sustained virological response in patients without advanced fibrosis, those with compensated advanced chronic liver disease, and those with decompensated cirrhosis.

View Article and Find Full Text PDF

Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells.

View Article and Find Full Text PDF

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3β. While STAT3α is predominantly described as an oncogenic driver, STAT3β has been suggested to act as a tumor suppressor.

View Article and Find Full Text PDF

Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells.

View Article and Find Full Text PDF

Portal hypertension and its prognostic implications in patients with Wilson's disease.

Aliment Pharmacol Ther

July 2024

Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.

Background And Aims: Wilson's disease may progress to cirrhosis and clinically significant portal hypertension (CSPH). We aimed to assess the prevalence and prognostic impact of CSPH-related features on hepatic decompensation and transplant-free survival in patients with Wilson's disease.

Methods And Results: About 137 patients with Wilson's disease (Leipzig score ≥4), followed for a median observation period of 9.

View Article and Find Full Text PDF

Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining.

View Article and Find Full Text PDF

Cancer is a multi-faceted disease with intricate relationships between mutagenic processes, alterations in cellular signaling, and the tissue microenvironment. To date, these processes have been largely studied in isolation. A systematic understanding of how they interact and influence each other is lacking.

View Article and Find Full Text PDF

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11.

View Article and Find Full Text PDF