36 results match your criteria: "Carnegie Mellon University and University of Pittsburgh[Affiliation]"

Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance.

J Neurosci

October 2024

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image.

View Article and Find Full Text PDF

Motor cortex is responsible for motoric dynamics in striatum and the execution of both skilled and unskilled actions.

Neuron

October 2024

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Electronic address:

Striatum and its predominant input, motor cortex, are responsible for the selection and performance of purposive movement, but how their interaction guides these processes is not understood. To establish its neural and behavioral contributions, we bilaterally lesioned motor cortex and recorded striatal activity and reaching performance daily, capturing the lesion's direct ramifications within hours of the intervention. We observed reaching impairment and an absence of striatal motoric activity following lesion of motor cortex, but not parietal cortex control lesions.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by changes in beta amyloid (Aß) and tau as well as changes in cerebral glucose metabolism and gray matter volume. This has been categorized as three distinct stages of amyloid, tau, and neurodegeneration. Past studies have shown asymmetric Aβ accumulation and its association with asymmetric cerebral metabolism in preclinical AD.

View Article and Find Full Text PDF

Microelectrode arrays provide the means to record electrophysiological activity critical to brain research. Despite its fundamental role, there are no means to customize electrode layouts to address specific experimental or clinical needs. Moreover, current electrodes demonstrate substantial limitations in coverage, fragility, and expense.

View Article and Find Full Text PDF

Eye tracking and other behavioral measurements collected from patient-participants in their hospital rooms afford a unique opportunity to study natural behavior for basic and clinical translational research. We describe an immersive social and behavioral paradigm implemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes implanted in the brain to determine the source of their seizures. Our studies entail collecting eye tracking with other behavioral and psychophysiological measurements from patient-participants during unscripted behavior, including social interactions with clinical staff, friends, and family in the hospital room.

View Article and Find Full Text PDF

Acquisition of new skills has the potential to disturb existing network function. To directly assess whether previously acquired cortical function is altered during learning, mice were trained in an abstract task in which selected activity patterns were rewarded using an optical brain-computer interface device coupled to primary visual cortex (V1) neurons. Excitatory neurons were longitudinally recorded using 2-photon calcium imaging.

View Article and Find Full Text PDF

Motor neurons convey information about motor intent that can be extracted and interpreted to control assistive devices. However, most methods for measuring the firing activity of single neurons rely on implanted microelectrodes. Although intracortical brain-computer interfaces (BCIs) have been shown to be safe and effective, the requirement for surgery poses a barrier to widespread use that can be mitigated by instead using noninvasive interfaces.

View Article and Find Full Text PDF

In high-stakes situations, people sometimes exhibit a frustrating phenomenon known as "choking under pressure." Usually, we perform better when the potential payoff is larger. However, once potential rewards get too high, performance paradoxically decreases-we "choke.

View Article and Find Full Text PDF

Perception reflects not only sensory inputs, but also the endogenous state when these inputs enter the brain. Prior studies show that endogenous neural states influence stimulus processing through non-specific, global mechanisms, such as spontaneous fluctuations of arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing and behavior as well.

View Article and Find Full Text PDF

Activity in Primary Motor Cortex Related to Visual Feedback.

Cell Rep

December 2019

Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213, USA; Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address:

Neural modulation in primate motor cortex exhibits complex patterns. We found that modulation during reaching could be separated into discrete temporal epochs. To determine if these epochs are driven by behavioral events, monkeys performed variations of a center-out reaching task.

View Article and Find Full Text PDF

Objectives: More than half of patients with major depression who do not respond to initial antidepressants become treatment resistant (TRD), and while electroconvulsive therapy (ECT) is effective, it involves anesthesia and other medical risks that are of concern in geriatric patients. Past studies have suggested that theta cordance (TC), a correlate of cerebral metabolism measured by electroencephalography, could guide treatment decisions related to patient selection and engagement of the therapeutic target.

Methods/design: Eight patients with late-life treatment resistant depression (LL-TRD) underwent magnetoencephalography (MEG) at baseline and following seven sessions of ECT.

View Article and Find Full Text PDF

Damage sensor role of UV-DDB during base excision repair.

Nat Struct Mol Biol

August 2019

Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase β-gap filling activity by 30-fold.

View Article and Find Full Text PDF

Decoding arm speed during reaching.

Nat Commun

December 2018

Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

Neural prostheses decode intention from cortical activity to restore upper extremity movement. Typical decoding algorithms extract velocity-a vector quantity with direction and magnitude (speed) -from neuronal firing rates. Standard decoding algorithms accurately recover arm direction, but the extraction of speed has proven more difficult.

View Article and Find Full Text PDF

Visual neurons respond more vigorously to an attended stimulus than an unattended one. How the brain prepares for response gain in anticipation of that stimulus is not well understood. One prominent proposal is that anticipation is characterized by gain-like modulations of spontaneous activity similar to gains in stimulus responses.

View Article and Find Full Text PDF

Though the fusiform is well-established as a key node in the face perception network, its role in facial expression processing remains unclear, due to competing models and discrepant findings. To help resolve this debate, we recorded from 17 subjects with intracranial electrodes implanted in face sensitive patches of the fusiform. Multivariate classification analysis showed that facial expression information is represented in fusiform activity and in the same regions that represent identity, though with a smaller effect size.

View Article and Find Full Text PDF

Health behaviors arise from the dynamics of highly interconnected networks in the brain and variability in these networks drives individual differences in behavior. In this review, we show how many factors that predict the physical health of the body also correlate with variability of the myelinated fascicles, called white matter, that connect brain regions together. The general pattern present in the literature is that as predictors of physical health decline, there is often a coincident reduction in the integrity of major white matter pathways.

View Article and Find Full Text PDF

Exercise effects on depression: Possible neural mechanisms.

Gen Hosp Psychiatry

November 2017

University of Pittsburgh, Department of Psychology, United States; Center for Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, United States.

Depression is a syndrome of stress- and emotion-dysregulation, involving compromised structural integrity of frontal-limbic networks. Meta-analytic evidence indicates that volumetric reductions in the hippocampus, anterior cingulate cortex, prefrontal cortex, striatum, and amygdala, as well as compromised white matter integrity are frequently observed in depressed adults. Exercise has shown promise as an effective treatment for depression, but few studies have attempted to characterize or identify the neural mechanisms of these effects.

View Article and Find Full Text PDF

Role of Brain Structure in Predicting Adherence to a Physical Activity Regimen.

Psychosom Med

January 2018

From the Department of Psychology (Gujral, Oberlin, Erickson), University of Pittsburgh, Pennsylvania; Center for Neural Basis of Cognition (Gujral, Oberlin, Erickson), Carnegie Mellon University and University of Pittsburgh, Pennsylvania; Department of Kinesiology and Community Health (McAuley), University of Illinois at Urbana-Champaign; and Department of Psychology (McAuley, Kramer), Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign.

Objective: Physical activity (PA) is important for maintaining health throughout the lifespan. However, adherence to PA regimens is poor with approximately 50% of older adults terminating activity intervention programs within 6 months. In this study, we tested whether gray matter volume and white matter microstructural integrity before the initiation of a PA intervention predicts PA adherence.

View Article and Find Full Text PDF

Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.

Neuroimage

November 2017

Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, USA; Program in Neural Computation, Carnegie Mellon University and University of Pittsburgh, USA; Department of Neurological Surgery, University of Pittsburgh, USA.

The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population.

View Article and Find Full Text PDF

Developing models of the dynamic and complex patterns of information processing that take place during behavior is a major thrust of systems neuroscience. An underlying assumption of many models is that the same set of rules applies across different conditions. This has been the case for directional tuning during volitional movement; a single cosine function has been remarkably robust for describing the encoding of movement direction in different types of neurons, in many locations of the nervous system, and even across species.

View Article and Find Full Text PDF

The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention.

View Article and Find Full Text PDF

Seasonal and pandemic influenza is a cause of morbidity and mortality worldwide. Most people infected with influenza virus display mild-to-moderate disease phenotypes and recover within a few weeks. Influenza is known to cause persistent alveolitis in animal models; however, little is known about the molecular pathways involved in this phenotype.

View Article and Find Full Text PDF

Decoding and disrupting left midfusiform gyrus activity during word reading.

Proc Natl Acad Sci U S A

July 2016

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213; Program in Neural Computation, Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA 15213;

The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts.

View Article and Find Full Text PDF

Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents.

Neuroimage

August 2016

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States.

Functional magnetic resonance imaging (fMRI) studies suggest that age-related changes in the frontal cortex may underlie developmental improvements in cognitive control. In the present study we used magnetoencephalography (MEG) to identify frontal oscillatory neurodynamics that support age-related improvements in cognitive control during adolescence. We characterized the differences in neural oscillations in adolescents and adults during the preparation to suppress a prepotent saccade (antisaccade trials-AS) compared to preparing to generate a more automatic saccade (prosaccade trials-PS).

View Article and Find Full Text PDF