4 results match your criteria: "Canada Ottawa Institute of Systems Biology[Affiliation]"
Genetics
October 2016
Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H 8M5, Canada Ottawa Institute of Systems Biology, University of Ottawa, Ontario K1H 8M5, Canada
Nicotinamide is both a reaction product and an inhibitor of the conserved sirtuin family of deacetylases, which have been implicated in a broad range of cellular functions in eukaryotes from yeast to humans. Phenotypes observed following treatment with nicotinamide are most often assumed to stem from inhibition of one or more of these enzymes. Here, we used this small molecule to inhibit multiple sirtuins at once during treatment with DNA damaging agents in the Saccharomyces cerevisiae model system.
View Article and Find Full Text PDFMol Biol Evol
September 2016
Department of Biology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders.
View Article and Find Full Text PDFEMBO Rep
October 2015
Institute of Medical Science University of Toronto, Toronto, ON, Canada Collaborative Program in Genome Biology and Bioinformatics, University of Toronto, Toronto, ON, Canada Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
In embryonic stem cells (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors regulating the ESC state is not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 ubiquitin ligase protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses, we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level.
View Article and Find Full Text PDFJ Cell Biol
July 2015
Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects.
View Article and Find Full Text PDF