537 results match your criteria: "Cambridge Centre for Brain Repair[Affiliation]"
Hum Mol Genet
December 2024
Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada.
Riboflavin transporter deficiency (RTD) is a rare and progressive neurodegenerative disease resulting from the disruption of RFVT2- and RFVT3- mediated riboflavin transport caused by biallelic mutations in SLC52A2 and SLC52A3, respectively. The resulting impaired mitochondrial metabolism leads to sensorimotor neurodegeneration and symptoms including muscle weakness, respiratory difficulty, and sensorineural deafness. Although over 70% of patients with RTD improve following high-dose riboflavin supplementation, remaining patients either stabilise or continue to deteriorate.
View Article and Find Full Text PDFSurv Ophthalmol
January 2025
Centre Hospitalier National D'Ophtalmologie des Quinze Vingts, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Fondation Ophtalmologique A. de Rothschild, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Our aim was to assess the visual outcomes of patients with Leber hereditary optic neuropathy (LHON) harboring the m.11778G>A MT-ND4 mutation who had no treatment (natural history) or received idebenone or lenadogene nolparvovec. Efficacy outcomes included clinically relevant recovery (CRR) from nadir and final best-corrected visual acuity (BCVA).
View Article and Find Full Text PDFCell Rep Med
May 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China. Electronic address:
The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production.
View Article and Find Full Text PDFGenes (Basel)
January 2024
Institute of Ophthalmology, University College London, 11 Bath Street, London EC1V 9EL, UK.
Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached.
View Article and Find Full Text PDFMov Disord
January 2024
Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo, Brazil.
Background: ATXN2 is the causative gene of spinocerebellar ataxia type 2 (SCA2) and has been implicated in glaucoma pathogenesis. Therefore, studying ocular changes in SCA2 could uncover clinically relevant changes.
Objective: The aim was to investigate optic disc and retinal architecture in SCA2.
Doc Ophthalmol
December 2023
Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK.
Purpose: To compare the diagnostic accuracy of the photopic negative response (PhNR) elicited by red-blue (RB) and white-white (WW) stimuli, for detection of retinal ganglion cell (RGC) dysfunction in a heterogeneous clinical cohort.
Methods: Adults referred for electrophysiological investigations were recruited consecutively for this single-centre, prospective, paired diagnostic accuracy study. PhNRs were recorded to red flashes (1.
Proc Natl Acad Sci U S A
March 2023
Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive.
View Article and Find Full Text PDFHandb Clin Neurol
February 2023
Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation.
View Article and Find Full Text PDFAm J Ophthalmol
May 2023
Moorfields Eye Hospital, London, United Kingdom (E.H.H., A.M., N.J., P.Y-W-M.); UCL Institute of Ophthalmology, University College London, London, United Kingdom (A.M., N.J., P.Y-W-M.); Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (B.S.C., P.Y-W-M.); Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, (B.S.C., P.Y-W-M.), Cambridge, United Kingdom.
Am J Ophthalmol
May 2023
Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France (J-A.S.); Rothschild Foundation Hospital, Paris, France (J-A.S.); Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (J-A.S.); Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France (J-A.S.).
Purpose: To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy.
Design: Pooled analysis of safety data from 5 clinical studies.
Methods: A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene.
Ophthalmol Ther
February 2023
Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
Brain
April 2023
Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
Leber hereditary optic neuropathy (LHON) is an important example of mitochondrial blindness with the m.11778G>A mutation in the MT-ND4 gene being the most common disease-causing mtDNA variant worldwide. The REFLECT phase 3 pivotal study is a randomized, double-masked, placebo-controlled trial investigating the efficacy and safety of bilateral intravitreal injection of lenadogene nolparvovec in patients with a confirmed m.
View Article and Find Full Text PDFLancet Neurol
February 2023
IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
Hereditary optic neuropathies result from defects in the human genome, both nuclear and mitochondrial. The two main and most recognised phenotypes are dominant optic atrophy and Leber hereditary optic neuropathy. Advances in modern molecular diagnosis have expanded our knowledge of genotypes and phenotypes of inherited disorders that affect the optic nerve, either alone or in combination, with various forms of neurological and systemic degeneration.
View Article and Find Full Text PDFBMC Neurol
July 2022
Charles River Laboratories, Evreux, France.
Background: Leber Hereditary Optic Neuropathy (LHON) is a rare, maternally-inherited mitochondrial disease that primarily affects retinal ganglion cells (RGCs) and their axons in the optic nerve, leading to irreversible, bilateral severe vision loss. Lenadogene nolparvovec gene therapy was developed as a treatment for patients with vision loss from LHON caused by the most prevalent m.11778G > A mitochondrial DNA point mutation in the MT-ND4 gene.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
June 2022
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Objectives: To explore the genetics of four Parkinson's disease (PD) subtypes that have been previously described in two large cohorts of patients with recently diagnosed PD. These subtypes came from a data-driven cluster analysis of phenotypic variables.
Methods: We looked at the frequency of genetic mutations in glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 against our subtypes.
Hum Mol Genet
October 2022
UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
J Neurol Neurosurg Psychiatry
May 2022
Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
Background: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers.
View Article and Find Full Text PDFMov Disord Clin Pract
February 2022
Department of Neuromuscular Diseases UCL Queen Square Institute of Neurology, University College London London United Kingdom.
Background: Biallelic loss-of-function variants have hitherto been linked to mitochondrial complex I deficiency presenting with heterogeneous clinical and radiological features in nine cases only.
Objectives: To fully characterize, both phenotypically and genotypically, -related mitochondrial disease.
Methods: We collected data from cases identified by screening genetic databases of several laboratories worldwide and systematically reviewed the literature.
Mov Disord
April 2022
Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo, Brazil.
Background: Neurodegeneration affects the brain and peripheral nervous system in spinocerebellar ataxia type 3 (SCA3). As the retina is also involved, studying the retinal architecture in a cohort of patients could reveal clinically relevant biomarkers.
Objective: The aim is to investigate retinal architecture in SCA3 to identify potential biomarkers.
N Engl J Med
November 2021
From Genomics England (D.S., K.R.S., A.M., E.A.T., E.M.M., A.T., G.C., K.I., L.M., M. Wielscher, A.N., M. Bale, E.B., C.B., H.B., M. Bleda, A. Devereau, D.H., E. Haraldsdottir, Z.H., D.K., C. Patch, D.P., A.M., R. Sultana, M.R., A.L.T.T., C. Tregidgo, C. Turnbull, M. Welland, S. Wood, C.S., E.W., S.L., R.E.F., L.C.D., O.N., I.U.S.L., C.F.W., J.C., R.H.S., T.F., A.R., M.C.), the William Harvey Research Institute, Queen Mary University of London (D.S., K.R.S., V.C., A.T., L.M., M.R.B., D.K., S. Wood, P.C., J.O.J., T.F., M.C.), University College London (UCL) Institute of Ophthalmology (V.C., G.A., M.M., A.T.M., S. Malka, N.P., P.Y.-W.-M., A.R.W.), UCL Genetics Institute (V.C., N.W.W.), GOSgene (H.J.W.), Genetics and Genomic Medicine Programme (L.V., M.R., M.D., L.C., P. Beales, M.B.-G.), National Institute for Health Research (NIHR) Great Ormond Street Hospital Biomedical Research Centre (BRC) (M.R., S. Grunewald, S.C.-L., F.M., C. Pilkington, L.R.W., L.C., P. Beales, M.B.-G.), Infection, Immunity, and Inflammation Research and Teaching Department (P.A., L.R.W.), Stem Cells and Regenerative Medicine (N.T.), and Mitochondrial Research Group (S. Rahman), UCL Great Ormond Street Institute of Child Health, UCL Ear Institute (L.V.), the Department of Renal Medicine (D. Bockenhauer), and Institute of Cardiovascular Science (P.E.), UCL, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust (V.C., G.A., M.M., A.T.M., S. Malka, N.P., A.R.W.), the National Hospital for Neurology and Neurosurgery (J.V., E.O., J.Y., K. Newland, H.R.M., J.P., N.W.W., H.H.), the Metabolic Unit (L.A., S. Grunewald, S. Rahman), London Centre for Paediatric Endocrinology and Diabetes (M.D.), and the Department of Gastroenterology (N.T.), Great Ormond Street Hospital for Children NHS Foundation Trust (L.V., D. Bockenhauer, A. Broomfield, M.A.C., T. Lam, E.F., V.G., S.C.-L., F.M., C. Pilkington, R. Quinlivan, C.W., L.R.W., A. Worth, L.C., P. Beales, M.B.-G., R.H.S.), the Clinical Genetics Department (M.R., T.B., C. Compton, C.D., E. Haque, L.I., D.J., S. Mohammed, L.R., S. Rose, D.R., G.S., A.C.S., F.F., M.I.) and St. John's Institute of Dermatology (H.F., R. Sarkany), Guy's and St. Thomas' NHS Foundation Trust, the Division of Genetics and Epidemiology, Institute of Cancer Research (C. Turnbull), Florence Nightingale Faculty of Nursing, Midwifery, and Palliative Care (T.B.), Division of Genetics and Molecular Medicine (M.A.S.), and Division of Medical and Molecular Genetics (M.I.), King's College London, NIHR BRC at Moorfields Eye Hospital (P.Y.-W.-M.), NHS England and NHS Improvement, Skipton House (V.D., A. Douglas, S. Hill), and Imperial College Healthcare NHS Trust, Hammersmith Hospital (K. Naresh), London, Open Targets and European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton (E.M.M.), the Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, University of Manchester (J.M.E., S.B., J.C.-S., S.D., G.H., H.B.T., R.T.O., G. Black, W.N.), and the Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust (J.M.E., Z.H., S.B., J.C.-S., S.D., G.H., G. Black, W.N.), Manchester, the Department of Genetic and Genomic Medicine, Institute of Medical Genetics, Cardiff University, Cardiff (H.J.W.), the Department of Clinical Neurosciences (T.R., W.W., R.H., P.F.C.), the Medical Research Council (MRC) Mitochondrial Biology Unit (T.R., W.W., P.Y.-W.-M., P.F.C.), the Department of Paediatrics (T.R.), the Department of Haematology (K.S., C. Penkett, S. Gräf, R.M., W.H.O., A.R.), the School of Clinical Medicine (K.R., E.L., R.A.F., K.P., F.L.R.), the Department of Medicine (S. Gräf), and Cambridge Centre for Brain Repair, Department of Clinical Neurosciences (P.Y.-W.-M.), University of Cambridge, NIHR BioResource, Cambridge University Hospitals (K.S., S.A., R.J., C. Penkett, E.D., S. Gräf, R.M., M.K., J.R.B., P.F.C., W.H.O., F.L.R.), and Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust (G.F., P.T., O.S.-B., S. Halsall, K.P., A. Wagner, S.G.M., N.B., M.K.), Cambridge Biomedical Campus, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge BRC (M.G.), Congenica (A.H., H.S.), Illumina Cambridge (A. Wolejko, B.H., G. Burns, S. Hunter, R.J.G., S.J.H., D. Bentley), NHS Blood and Transplant (W.H.O.), and Wellcome Sanger Institute (W.H.O.), Cambridge, the Health Economics Research Centre (J. Buchanan, S. Wordsworth) and the Wellcome Centre for Human Genetics (C. Camps, J.C.T.), University of Oxford, NIHR Oxford BRC (J. Buchanan, S. Wordsworth, J.D., C. Crichton, J.W., K.W., C. Camps, S.P., N.B.A.R., A.S., J.T., J.C.T.), the Oxford Centre for Genomic Medicine (A. de Burca, A.H.N.), and the Departments of Haematology (N.B.A.R.) and Neurology (A.S.), Oxford University Hospitals NHS Foundation Trust, Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital (C. Campbell, K.G., T. Lester, J.T.), the MRC Weatherall Institute of Molecular Medicine (N.K., N.B.A.R., A.O.M.W.) and the Oxford Epilepsy Research Group (A.S.), Nuffield Department of Clinical Neurosciences (A.H.N.), University of Oxford, and the Department of Clinical Immunology (S.P.), John Radcliffe Hospital, Oxford, Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust (E.B.), and the University of Exeter Medical School (E.B., C.F.W.), Royal Devon and Exeter Hospital (S.E.), Exeter, Newcastle Eye Centre, Royal Victoria Infirmary (A.C.B.), the Institute of Genetic Medicine, Newcastle University, International Centre for Life (V.S., P. Brennan), Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University (G.S.G., R.H., A.M.S., D.M.T., R. Quinton, R.M., R.W.T., J.A.S.), Highly Specialised Mitochondrial Service (G.S.G., A.M.S., D.M.T., R.M., R.W.T.) and Northern Genetics Service (J. Burn), Newcastle upon Tyne Hospitals NHS Foundation Trust (J.A.S.), and NIHR Newcastle BRC (G.S.G., D.M.T., J.A.S.), Newcastle upon Tyne, the Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham (C. Palles), and Birmingham Women's Hospital (D.M.), Birmingham, the Genomic Informatics Group (E.G.S.), University Hospital Southampton (I.K.T.), and the University of Southampton (I.K.T.), Southampton, Liverpool Women's NHS Foundation Trust, Liverpool (A. Douglas), the School of Cellular and Molecular Medicine, University of Bristol, Bristol (A.D.M.), and Yorkshire and Humber, Sheffield Children's Hospital, Sheffield (G.W.) - all in the United Kingdom; Fabric Genomics, Oakland (M. Babcock, M.G.R.), and the Ophthalmology Department, University of California, San Francisco School of Medicine, San Francisco (A.T.M.) - both in California; the Jackson Laboratory for Genomic Medicine, Farmington, CT (P.N.R.); and the Center for Genome Research and Biocomputing, Environmental and Molecular Toxicology, Oregon State University, Corvallis (M.H.).
Background: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2021
Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
Lenadogene nolparvovec (Lumevoq) gene therapy was developed to treat Leber hereditary optic neuropathy (LHON) caused by the m.11778G > A in that affects complex I of the mitochondrial respiratory chain. Lenadogene nolparvovec is a replication-defective, single-stranded DNA recombinant adeno-associated virus vector 2 serotype 2, containing a codon-optimized complementary DNA encoding the human wild-type subunit protein.
View Article and Find Full Text PDFJ Neuroophthalmol
March 2022
UCL Institute of Ophthalmology (JPH, PES, PY-W-M, MC), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, PY-W-M), London, United Kingdom; Department of Clinical Neurosciences (PY-W-M), Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; and Department of Clinical Neurosciences (PY-W-M), John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
Background: Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment.
View Article and Find Full Text PDFAm J Hum Genet
October 2021
Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA; Departments of Child Health, Neurology, Cellular, and Molecular Medicine and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA. Electronic address:
Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2021
UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy in the United Kingdom. DOA has an insidious onset in early childhood, typically presenting with bilateral, central visual loss caused by the preferential loss of retinal ganglion cells. 60%-70% of genetically confirmed DOA cases are associated with variants in , a ubiquitously expressed GTPase that regulates mitochondrial homeostasis through coordination of inner membrane fusion, maintenance of cristae structure, and regulation of bioenergetic output.
View Article and Find Full Text PDF