5 results match your criteria: "California Institute of Technology Pasadena California 91125 USA mrobb@caltech.edu.[Affiliation]"

Polymers that release functional small molecules in response to mechanical force are promising materials for a variety of applications including drug delivery, catalysis, and sensing. While many different mechanophores have been developed that enable the triggered release of a variety of small molecule payloads, most mechanophores are limited to one specific payload molecule. Here, we leverage the unique fragmentation of a 5-aryloxy-substituted 2-furylcarbinol derivative to design a novel mechanophore capable of the mechanically triggered release of two distinct cargo molecules.

View Article and Find Full Text PDF

In contrast to common angular naphthopyrans that exhibit strong photochromic and mechanochromic behavior, constitutionally isomeric linear naphthopyrans are typically not photochromic, due to the putative instability of the completely dearomatized merocyanine product. The photochemistry of linear naphthopyrans is thus relatively understudied compared to angular naphthopyrans, while the mechanochromism of linear naphthopyrans remains completely unexplored. Here we demonstrate that the incorporation of a polarizing dialkylamine substituent enables photochromic and mechanochromic behavior from polymers containing a novel linear naphthopyran motif.

View Article and Find Full Text PDF

Naphthopyran molecular switches undergo a ring-opening reaction upon external stimulation to generate intensely colored merocyanine dyes. Their unique modularity and synthetic accessibility afford exceptional control over their properties and stimuli-responsive behavior. Commercial applications of naphthopyrans as photoswitches in photochromic ophthalmic lenses have spurred an extensive body of work exploring naphthopyran-merocyanine structure-property relationships.

View Article and Find Full Text PDF

Molecular force probes conveniently report on mechanical stress and/or strain in polymers through straightforward visual cues. Unlike conventional mechanochromic mechanophores, the mechanically gated photoswitching strategy decouples mechanochemical activation from the ultimate chromogenic response, enabling the mechanical history of a material to be recorded and read on-demand using light. Here we report a completely redesigned, highly modular mechanophore platform for mechanically gated photoswitching that offers a robust, accessible synthesis and late stage diversification through Pd-catalyzed cross-coupling reactions to precisely tune the photophysical properties of the masked diarylethene (DAE) photoswitch.

View Article and Find Full Text PDF

Mechanochromic molecular force probes conveniently report on stress and strain in polymeric materials through straightforward visual cues. We capitalize on the versatility of the naphthopyran framework to design a series of mechanochromic mechanophores that exhibit highly tunable color and fading kinetics after mechanochemical activation. Structurally diverse naphthopyran crosslinkers are synthesized and covalently incorporated into silicone elastomers, where the mechanochemical ring-opening reactions are achieved under tension to generate the merocyanine dyes.

View Article and Find Full Text PDF