332 results match your criteria: "California Institute for Quantitative Biosciences (QB3)[Affiliation]"
Biomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Polycomb repressive complex 2 (PRC2) trimethylates histone H3 on K27 (H3K27me3) leading to gene silencing that is essential for embryonic development and maintenance of cell identity. PRC2 is regulated by protein cofactors and their crosstalk with histone modifications. Trimethylated histone H3 on K4 (H3K4me3) and K36 (H3K36me3) localize to sites of active transcription and inhibit PRC2 activity through unknown mechanisms.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Chemistry, University of California, Berkeley, CA, USA.
Aminoacyl-tRNA synthetases (aaRSs) provide an essential functional link between an mRNA sequence and the protein it encodes. aaRS enzymes catalyze a two-step chemical reaction that acylates specific tRNAs with a cognate α-amino acid. In addition to their role in translation, acylated tRNAs contribute to non-ribosomal natural product biosynthesis and are implicated in multiple human diseases.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.
View Article and Find Full Text PDFAdv Funct Mater
August 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region.
View Article and Find Full Text PDFElife
December 2024
Department of Molecular & Cell Biology, University of California at Berkeley, Berkeley, United States.
Mol Cell
December 2024
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA. Electronic address:
While reactive oxygen species (ROS) have long been known to drive aging and neurodegeneration, their persistent depletion below basal levels also disrupts organismal function. Cells counteract loss of basal ROS via the reductive stress response, but the identity and biochemical activity of ROS sensed by this pathway remain unknown. Here, we show that the central enzyme of the reductive stress response, the E3 ligase Cullin 2-FEM1 homolog B (CUL2), specifically acts at mitochondrial TOM complexes, where it senses ROS produced by complex III of the electron transport chain (ETC).
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
The Unfolded Protein Response (UPR) was discovered in budding yeast as a mechanism that allows cells to adapt to ER stress. While the Ire1 branch of this pathway is highly conserved, it is not thought to be important for cellular homeostasis in the absence of stress. Surprisingly, we found that removal of UPR activity led to pervasive aneuploidy in budding yeast cells, suggesting selective pressure resulting from UPR-deficiency.
View Article and Find Full Text PDFR2 retrotransposons are model site-specific eukaryotic non-LTR retrotransposons that copy-and-paste into gene loci encoding ribosomal RNAs. Recently we demonstrated that avian A-clade R2 proteins achieve efficient and precise insertion of transgenes into their native safe-harbor loci in human cells. The features of A-clade R2 proteins that support gene insertion are not characterized.
View Article and Find Full Text PDFScience
November 2024
California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis.
View Article and Find Full Text PDFPLoS Pathog
November 2024
Gladstone Institutes, San Francisco, California, United States of America.
All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Fungal polysaccharide monooxygenases (PMOs) oxidatively degrade cellulose and other carbohydrate polymers via a mononuclear copper active site using either O or HO as a cosubstrate. Cellulose-active fungal PMOs in the auxiliary activity 9 (AA9) family have a conserved second-sphere hydrogen-bonding network consisting of histidine, glutamine, and tyrosine residues. The second-sphere histidine has been hypothesized to play a role in proton transfer in the O-dependent PMO reaction.
View Article and Find Full Text PDFCell
November 2024
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.
A protein's energy landscape, all the accessible conformations, their populations, and their dynamics of interconversion, is encoded in its primary sequence. While we have a good understanding of how a protein's primary sequence encodes its native state, we have a much weaker understanding of how sequence encodes the kinetic barriers such as unfolding and refolding. Here we have looked at two subtiliase homologs from the , Intracellular Subtilisin Protease 1 (ISP1) and Subtilisin E (SbtE) that are expected to have very different dynamics.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2024
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA.
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ~20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.
View Article and Find Full Text PDFCell Syst
August 2024
Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. Electronic address:
Evolution-based deep generative models represent an exciting direction in understanding and designing proteins. An open question is whether such models can learn specialized functional constraints that control fitness in specific biological contexts. Here, we examine the ability of generative models to produce synthetic versions of Src-homology 3 (SH3) domains that mediate signaling in the Sho1 osmotic stress response pathway of yeast.
View Article and Find Full Text PDFCell
September 2024
Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA. Electronic address:
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Plant and Microbial Biology, University of California Berkeley, University of California, Berkeley, CA 94720, USA.
Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae.
View Article and Find Full Text PDFScience
August 2024
California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
Nat Commun
July 2024
Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
Voltage-sensing phosphatases (VSPs) dephosphorylate phosphoinositide (PIP) signaling lipids in response to membrane depolarization. VSPs possess an S4-containing voltage sensor domain (VSD), resembling that of voltage-gated cation channels, and a lipid phosphatase domain (PD). The mechanism by which voltage turns on enzyme activity is unclear.
View Article and Find Full Text PDFMetab Eng
September 2024
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark. Electronic address:
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.
View Article and Find Full Text PDF