1,290 results match your criteria: "California Institute for Quantitative Biosciences[Affiliation]"

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells.

View Article and Find Full Text PDF

Computationally guided AAV engineering for enhanced gene delivery.

Trends Biochem Sci

May 2024

California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Electronic address:

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering.

View Article and Find Full Text PDF

Disease-associated astrocyte epigenetic memory promotes CNS pathology.

Nature

March 2024

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge.

View Article and Find Full Text PDF

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates.

View Article and Find Full Text PDF

Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman comprises a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease.

View Article and Find Full Text PDF

Domain coupling in activation of a family C GPCR.

bioRxiv

February 2024

Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720, USA.

The G protein-coupled metabotropic glutamate receptors form homodimers and heterodimers with highly diverse responses to glutamate and varying physiological function. The molecular basis for this diversity remains poorly delineated. We employ molecular dynamics, single-molecule spectroscopy, and hydrogen-deuterium exchange to dissect the pathway of activation triggered by glutamate.

View Article and Find Full Text PDF

Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs.

View Article and Find Full Text PDF

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling.

View Article and Find Full Text PDF

Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3).

View Article and Find Full Text PDF

Targeted nonviral delivery of genome editors in vivo.

Proc Natl Acad Sci U S A

March 2024

University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720.

Article Synopsis
  • Cell-type-specific delivery of genome editing tools, like CRISPR-Cas, is poised to revolutionize biological research and gene therapy.
  • Recent advances focus on using ribonucleoproteins or mRNA for delivery, which have advantages over traditional viral methods.
  • These innovative strategies can lead to more efficient and accessible genome editing, with promising implications for clinical applications.
View Article and Find Full Text PDF

Interactions among proteins and peptides are essential for many biological activities including the tailoring of peptide substrates to produce natural products. The first step in the production of the bacterial redox cofactor pyrroloquinoline quinone (PQQ) from its peptide precursor is catalyzed by a radical SAM (rSAM) enzyme, PqqE. We describe the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the structure and conformational dynamics in the protein-protein and protein-peptide complexes necessary for PqqE function.

View Article and Find Full Text PDF

The delivery of CRISPR ribonucleoproteins (RNPs) for genome editing in vitro and in vivo has important advantages over other delivery methods, including reduced off-target and immunogenic effects. However, effective delivery of RNPs remains challenging in certain cell types due to low efficiency and cell toxicity. To address these issues, we engineer self-deliverable RNPs that can promote efficient cellular uptake and carry out robust genome editing without the need for helper materials or biomolecules.

View Article and Find Full Text PDF

The synthetic future of algal genomes.

Cell Genom

March 2024

Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. Electronic address:

Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae.

View Article and Find Full Text PDF

Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers.

J Am Chem Soc

March 2024

California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States.

Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes.

View Article and Find Full Text PDF

Apoptosis linked Gene-2 (ALG-2) is a multifunctional intracellular Ca sensor and the archetypal member of the penta-EF hand protein family. ALG-2 functions in the repair of damage to both the plasma and lysosome membranes and in COPII-dependent budding at ndoplasmic eticulum xit ites (ERES). In the presence of Ca, ALG-2 binds to ESCRT-I and ALIX in membrane repair and to SEC31A at ERES.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) is an epigenetic regulator essential for embryonic development and maintenance of cell identity that trimethylates histone H3 at lysine 27 (H3K27me3) leading to gene silencing. PRC2 is regulated by association with protein cofactors and crosstalk with histone posttranslational modifications. Trimethylated histone H3 K4 (H3K4me3) and K36 (H3K36me3) localize to sites of active transcription where H3K27me3 is absent and inhibit PRC2 activity through unknown mechanisms.

View Article and Find Full Text PDF

The covalent attachment of ubiquitin-like LC3 proteins (microtubule-associated proteins 1A/1B light chain 3) prepares the autophagic membrane for cargo recruitment. We resolve key steps in LC3 lipidation by combining molecular dynamics simulations and experiments in vitro and in cellulo. We show how the E3-like ligaseautophagy-related 12 (ATG12)-ATG5-ATG16L1 in complex with the E2-like conjugase ATG3 docks LC3 onto the membrane in three steps by (i) the phosphatidylinositol 3-phosphate effector protein WD repeat domain phosphoinositide-interacting protein 2 (WIPI2), (ii) helix α2 of ATG16L1, and (iii) a membrane-interacting surface of ATG3.

View Article and Find Full Text PDF

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how DNA wrapped around histone proteins, forming nucleosomes, can be accessed during processes like replication and repair, highlighting the dynamic nature of these structures.
  • Researchers used high-speed atomic force microscopy to visualize nucleosome disassembly, finding that this process is sequential and involves the ejection of dimers, with linker histone H1 playing a key role in restricting DNA unwrapping and increasing nucleosomal stability.
  • The findings reveal that tetrasomes (a type of nucleosome structure) are resilient and mobile, potentially influencing how nucleosomes assemble and function during transcription, especially in the presence of RNA polymerase.
View Article and Find Full Text PDF

Lysosomes have long been known for their acidic lumens and efficient degradation of cellular byproducts. In recent years, it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size make lysosomes difficult to image with fluorescence microscopy.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapies. AAVs have been successfully engineered-for instance, for more efficient and/or cell-specific delivery to numerous tissues-by creating large, diverse starting libraries and selecting for desired properties. However, these starting libraries often contain a high proportion of variants unable to assemble or package their genomes, a prerequisite for any gene delivery goal.

View Article and Find Full Text PDF
Article Synopsis
  • - Doa10 is a key E3 ubiquitin ligase located in the endoplasmic reticulum that helps regulate the quality control of both cytosolic and ER proteins in metazoans, although its substrate recognition mechanism remains unclear.
  • - Research involving structural and functional analyses revealed that Doa10 has a unique structure with a large lipid-filled cavity and a lateral tunnel that permits substrate entry, specifically for the degron Deg1.
  • - Findings indicate that for effective polyubiquitination, the degron peptide must enter the lateral tunnel, while Doa10's membrane domains create barriers to ensure only suitable proteins can reach the active sites for ubiquitination.
View Article and Find Full Text PDF

We demonstrate the fabrication of sharp nanopillars of high aspect ratio onto specialized atomic force microscopy (AFM) microcantilevers and their use for high-speed AFM of DNA and nucleoproteins in liquid. The fabrication technique uses localized charged-particle-induced deposition with either a focused beam of helium ions or electrons in a helium ion microscope (HIM) or scanning electron microscope (SEM). This approach enables customized growth onto delicate substrates with nanometer-scale placement precision and in situ imaging of the final tip structures using the HIM or SEM.

View Article and Find Full Text PDF

Expanding the structural diversity of terpenes by synthetic biology approaches.

Trends Biotechnol

June 2024

Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, School of Pharmacy, School of Public Health, Hangzhou Normal University, Hangzhou 310000, China. Electronic address:

Terpenoids display chemical and structural diversities as well as important biological activities. Despite their extreme variability, the range of these structures is limited by the scope of natural products that canonically derive from interconvertible five-carbon (C5) isoprene units. New approaches have recently been developed to expand their structural diversity.

View Article and Find Full Text PDF

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment.

View Article and Find Full Text PDF