145 results match your criteria: "CSIR-Central electrochemical research institute CECRI[Affiliation]"

Molybdenum disulfide (MoS) is a promising alternative electrocatalyst for hydrogen evolution reaction (HER) due to its relatively near zero hydrogen adsorption free energy (Δ = 0.08) and availability as a metallic (1T) phase. The superior catalytic activity of the 1T phase over 2H is owing to the availability of dense active sites, 10 fold higher conductivity, and greater hydrophilicity.

View Article and Find Full Text PDF

Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm with a lower Tafel slope value of 81.

View Article and Find Full Text PDF

RNA isolation and amplification-free user-friendly detection of SARS-CoV-2 is the need of hour especially at resource limited settings. Herein, we devised the peptides of human angiotensin converting enzyme-2 (ACE-2) as bioreceptor at electrode interface for selective targeting of receptor binding domains (RBD) of SARS-CoV-2 spike protein (SP). Disposable carbon-screen printed electrode modified with methylene blue (MB) electroadsorbed graphene oxide (GO) has been constructed as cost-efficient and scalable platform for ACE-2 peptide-based SARS-CoV-2 detection.

View Article and Find Full Text PDF

Hydrogen is considered as one of the best alternatives to carbon-based fossil fuels as energy sources. Electrocatalytic water splitting is one of the finest and eco-friendly methods for the production of hydrogen as compared to all other methods such as stream reforming carbon, hydrolysis of metal hydrides, etc. However, the sluggish kinetics on both the half-cell reactions limits the large-scale production of hydrogen.

View Article and Find Full Text PDF

A post-synthetic technique, Solvent Assisted Ligand Incorporation (SALI), was used for thiol functionalization in the zirconium-based metal-organic framework NU-1000. This thiol-functionalized MOF was employed as a support for the growth of silver nanoparticles (Ag NPs) through coordination of a Ag(I) complex with a node-anchored thiol-ligand, followed by the reduction of Ag(I) to Ag(0). X-ray photoelectron spectroscopy revealed that the ratio of Ag(0) to Ag(I) proportionally increased with the loading of silver ions.

View Article and Find Full Text PDF

The poor kinetic background with the four-electron transfer of the oxygen evolution reaction (OER) was eradicated using a nickel-based catalyst, which was identified as an alternative to noble-metal catalysts. Here, we report the simple formation of an earth-abundant nickel oxyhydroxide (NiOOH) electrocatalyst for efficient OER in an alkaline medium. Electroless material preparation, namely, the direct modification of a gas diffusion layer (GDL) with a nickel salt, was studied, and the layered oxyhydroxide phase was found to influence the rate of the OER.

View Article and Find Full Text PDF

To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates a new bimetallic zeolite imidazolate framework (ZIF) made of cobalt and manganese to enhance electrocatalytic oxygen evolution reactions (OER) through electrospinning.
  • - The resulting nanofibers exhibited a reduced overpotential of 302 mV at 10 mA/cm² in alkaline conditions, with a Tafel slope of 125 mV/dec and a charge-transfer resistance of 4 Ω, indicating efficient kinetics in the OER process.
  • - It was found that manganese acts as the primary active center in the ZIF-67 nanofibers, while the presence of cobalt affects the Jahn-Teller distortion and overall performance, supported by
View Article and Find Full Text PDF

UiO-66 has been tailored using defect engineering methodology to introduce thiol functionalities into the MOF skeletal structure. The thiolated UiO-66 serves as a scaffold to support the platinum nanoparticles with a size of ∼2 nm through a soft-soft interaction. This Pt@UiO-66-SH, utilized as an HER catalyst, exhibited an overpotential of 57 mV at a current density of 10 mA cm in an acidic medium with a Tafel slope of 75 mV/dec and a high TOF value (389.

View Article and Find Full Text PDF

3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.

Int J Biol Macromol

September 2022

Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR) - CSIR, Ghaziabad 201002, Uttar Pradesh, India. Electronic address:

In the recent years, bone tissue engineering is regarded as the promising solution for treatment of bone defects which arises due to trauma, infection and surgical intervention. In view of this, several polymer or ceramic based constructs are envisaged for bone tissue engineering potential. However, scaffolds based on pure polymeric materials suffer from slow bioactivity characteristics.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a modern approach based on computer science that develops programs and algorithms to make devices intelligent and efficient for performing tasks that usually require skilled human intelligence. AI involves various subsets, including machine learning (ML), deep learning (DL), conventional neural networks, fuzzy logic, and speech recognition, with unique capabilities and functionalities that can improve the performances of modern medical sciences. Such intelligent systems simplify human intervention in clinical diagnosis, medical imaging, and decision-making ability.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) not only combine globally demanded renewable energy generation and environmental remediation onto a single platform but also rationalize structure-performance synergies to devise smarter materials with remarkable performance. The robust and non-interpenetrated cationic MOF exemplifies a unique bifunctional scaffold for the efficient electrochemical oxygen evolution reaction (OER) and ultrasensitive monitoring of biohazards. The microporous framework containing Brønsted acid-functionalized [Co(μ-OH)(CO)] secondary building units (SBUs) exhibits remarkable OER performance in 1 M KOH, requiring 410 mV overpotential to obtain 10 mA cm anodic current density, and a low Tafel slope of 55 mV/dec with 93.

View Article and Find Full Text PDF

Human health-related issues are increasing in day to day life because of the modern and unhygienic food lifestyles. In recent times, green tea (GT) gains more attention due to its numerous health benefits. It contains more biologically active compounds that improve mental health, increase metabolism, reduce cancer risks, and serve as an anti-aging agent for the brain.

View Article and Find Full Text PDF

The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFeO-NFs) an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium.

View Article and Find Full Text PDF

The electrocatalytic hydrogen evolution reaction (HER) holds grip as a promising strategy to obtain renewable energy resources in the form of clean fuel - hydrogen (H). However, understanding the catalytic mechanism at the atomic level for sustainable and efficient production of hydrogen remains an arduous challenge. In this regard, atomically precise nanoclusters (NCs) with their molecule-like properties can be utilized for a better understanding of the mechanism at the catalytic interface, identification of active sites, and much more.

View Article and Find Full Text PDF

Electrochemical and DFT studies of andrographolide on electrochemically reduced graphene oxide for anti-viral herbaceutical sensor.

Anal Chim Acta

May 2022

Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Herbal extracts are re-emerging as potential remedies for various vector-borne diseases. Amongst several phytochemicals, active ingredients of Andrographis paniculata extract is regarded as promising for dengue fever, caused by Aedes species. However, fingerprinting the active phytochemicals from herbal extracts are often relies on sophisticated analytical techniques which are not universally accessible.

View Article and Find Full Text PDF

The difference in resistive switching characteristics by modifying the device configuration provides a unique operating principle, which is essential for both fundamental studies and the development of future memory devices. Here, we demonstrate the poly(methyl methacrylate) (PMMA)-based resistive switching characteristics using four different combinations of electrode/electrolyte arrangement in the device geometry. From the current-voltage () measurements, all the PMMA-based devices revealed nonvolatile memory behavior with a higher ON/OFF resistance ratio (∼10-10).

View Article and Find Full Text PDF

Rational design of effective solid-state electrochemiluminescence platform of Gold@Polyluminol nanocomposite as an ultrasensitive immuno-probe for selective detection of prostate specific antigen.

Anal Chim Acta

May 2022

Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India. Electronic address:

An electrodeposited gold@poly-luminol nanocomposite on glassy carbon electrode (Au@PL-NC/GCE) has been developed and demonstrated as solid-state electrochemiluminescence (ECL) immunosensor platform for prostate specific antigen (PSA) sensing. In-situ electro-generated reactive oxygen species (ROS) from oxygen reduction reaction in oxygen saturated PBS (pH 7.4) acts as sole co-reactant augmenting the signal transduction.

View Article and Find Full Text PDF

Towards the development of reagent-free and reusable electrochemical aptamer-based cortisol sensor.

Bioelectrochemistry

June 2022

Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India. Electronic address:

Continuous monitoring of stress through detecting specific biochemical markers such as cortisol plays a crucial role in the early detection of various diseases. Electrochemical aptamer sensor involving binding induced conformational change allows the continuous measurement of biomarkers. A reagent-less aptamer-based biosensing platform that allows a continuous and real-time cortisol measurement is developed in this context.

View Article and Find Full Text PDF

Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions.

View Article and Find Full Text PDF

The generation of pure H from a neutral electrolyte solution represents a transformative route with low cost and environmentally friendly nature. However, the complex kinetics of hydrogen evolution reaction (HER) via water electrolysis make its practical application to be difficult. Herein, we have reported Ru-doping-induced formation of VS nanostructures with a rich S vacancy for neutral HER in a 0.

View Article and Find Full Text PDF

Electrocatalytic water splitting has gained vast attention in recent decades for its role in catalyzing hydrogen production effectively as an alternative to fossil fuels. Moreover, the designing of highly efficient oxygen evolution reaction (OER) electrocatalysts across the universal pH conditions was more challengeable as in harsh anodic potentials, it questions the activity and stability of the concerned catalyst. Generally, geometrical engineering and electronic structural modulation of the catalyst can effectively boost the OER activity.

View Article and Find Full Text PDF

Development of a low-cost transition metal-based catalyst for water splitting is of prime importance for generating green hydrogen on an industrial scale. Recently, various transition metal-based oxides, hydroxides, sulfides, and other chalcogenide-based materials have been synthesized for developing a suitable anode material for the oxygen evolution reaction (OER). Among the various transition metal-based catalysts, their oxides have received much consideration for OER, especially in lower pH condition, and MnO is one of the oxides that have widely been used for the same.

View Article and Find Full Text PDF

Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors.

View Article and Find Full Text PDF

The growing energy demand with the widespread use of smart portable electronics, as well as an exponential increase in demand for smart batteries for electric vehicles, entails the development of efficient portable batteries with high energy density and safe power storage systems. Li-ion batteries arguably have superior energy density to all other traditional batteries. Developing mechanically robust solid-state electrolytes (SSEs) for lithium-ion conduction for an efficient portable energy storage unit is vital to empower this technology and overcome the safety constraints of liquid electrolytes.

View Article and Find Full Text PDF