31 results match your criteria: "CSIR- Human Resource Development Centre (CSIR-HRDC) Campus[Affiliation]"

Probing the synergistic effect of metal-organic framework derived Co-Nx rich interwoven hierarchical porous carbon tube encapsulated dual redox active nanoalloy for high-performance Zn-air battery and supercapacitor applications.

J Colloid Interface Sci

December 2024

Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India. Electronic address:

Rechargeable zinc-air batteries (ZABs) with high-performance and stability is desirable for encouraging the transition of the technology from academia to industries. However, achieving this balance remains a formidable challenge, primarily due to the requirement of robust, earth-abundant reversible oxygen electrocatalyst. The present study introduces a simple strategy to synthesize Co-N rich nanoalloy with N-doped porous carbon tubes (NiCo@NPCTs).

View Article and Find Full Text PDF

India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins.

View Article and Find Full Text PDF

Engineering rockmass classifications are an integral part of design, support and excavation procedures of tunnels, mines, and other underground structures. These classifications are directly linked to ground reaction and support requirements. Various classification systems are in practice and are still evolving.

View Article and Find Full Text PDF

A novel zeolitic tetrazolate framework (ZTF-8) has been synthesized by solvent-free heat-assisted (70 °C) mechanochemical grinding of zinc acetate and 5-methyl tetrazole in the presence of NaOH powder. The structure of ZTF-8 adopts the zeolitic sodalite (SOD) topology with uncoordinated N-heteroatom sites and resembles the structure of the well-known zeolitic imidazole framework ZIF-8. ZTF-8 is exceptionally stable in 0.

View Article and Find Full Text PDF

Four edible flowers commonly consumed in the Western Himalayan region, namely, (Kachnar), (Nasturtium), (Chamomile), and (Marigold), were characterized for their nutritional and phytochemical composition. Through the UHPLC-QTOF-IMS-based metabolomics approach, 131 compounds were tentatively identified consisting of phenolic acids, flavonoid glycosides, terpenoids, amino acids, and fatty acid derivatives. Kaempferol and quercetin glycosides for Kachnar, apigenin glycosides and caffeoylquinic acid derivatives for Chamomile, patulin and quercetin derivatives for Marigold, cyanidin and delphinidin glycosides for Nasturtium were the predicted marker metabolites identified through non-targeted metabolomics.

View Article and Find Full Text PDF

Chemical Bridge-Mediated Heterojunction Electron Transport Layers Enable Efficient and Stable Perovskite Solar Cells.

ACS Appl Mater Interfaces

June 2023

Department of Flexible and Printable Electronics and LANL-CBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.

Perovskite solar cells (PSCs) emerged as potential photovoltaic energy-generating devices developing in recent years because of their excellent photovoltaic properties and ease of processing. However, PSCs are still reporting efficiencies much lower than their theoretical limits owing to various losses caused by the charge transport layer and the perovskite. In this regard, herein, an interface engineering strategy using functional molecules and chemical bridges was applied to reduce the loss of the heterojunction electron transport layer.

View Article and Find Full Text PDF

Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal-organic framework and subsequent annealing in different Ar/H gas ratios. B-CoO/Co@NC/NF prepared using 10% H gas (B-CoO/Co@NC/NF [10% H ]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm with excellent long-term durability for 100 h.

View Article and Find Full Text PDF

Complex alpha and beta mannan foraging by the human gut bacteria.

Biotechnol Adv

September 2023

Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India. Electronic address:

The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research.

View Article and Find Full Text PDF

The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N to NH conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces.

View Article and Find Full Text PDF

Nucleolin (NCL) is a well-characterized nucleic acid-binding protein; it binds to various canonical and noncanonical structures including single- and double-stranded DNA and RNA, hairpin, loops, and G-quadruplex structures. G-quadruplex structures are majorly formed in promoter, telomeric, and untranslated regions of the genome and affect the process of replication, transcription, and translation. One of the widely studied G-quadruplex-forming regions are telomeres, as these are sites for the recruitment for various proteins providing stability or having an effect on the telomerase activity.

View Article and Find Full Text PDF

The present study was aimed at developing () fortified traditional foods of the Indian subcontinent, namely sattu (multigrain beverage mix) and chikki (peanut bar) and evaluating their ability to promote recovery from protein and iron deficiency anaemia (IDA) using albino Wistar rats. Addition of (at 4% w/w inclusion levels) enriched the protein content by 20.33% in sattu and 15.

View Article and Find Full Text PDF

Introducing amorphous and ultrathin nanosheets of transition bimetal phosphate arrays that are highly active in the oxygen evolution reaction (OER) as shells over an electronically modulated crystalline core with low hydrogen absorption energy for an excellent hydrogen evolution reaction (HER) can boost the sluggish kinetics of the OER and HER in alkaline electrolytes. Therefore, in this study, ultrathin and amorphous cobalt-nickel-phosphate (CoNiPO ) nanosheet arrays are deposited over vanadium (V)-doped cobalt-nitride (V -Co N) crystalline core nanowires to obtain amorphous-shell@crystalline-core mesoporous 3D-heterostructures (CoNiPO @V-Co N/NF) as bifunctional electrocatalysts. The optimized electrocatalyst shows extremely low HER and OER overpotentials of 53 and 270 mV at 10 mA cm , respectively.

View Article and Find Full Text PDF

Sulphonated graphene oxide was used for cascade condensation and cyclization reactions towards accessing substituted pyrazolo pyrimidinones. Further, sulphonation and amination reactions were integrated through continuous flow chemistry to access PDE-5 inhibitors. Herein, we report a simple continuous synthetic platform that reduce tedious manual operations and accelerate the synthesis of several potent inhibitors of phosphodiesterase type-5.

View Article and Find Full Text PDF

Enhanced photocatalytic properties of a chemically modified blue phosphorene.

RSC Adv

April 2021

Physical and Materials Chemistry Division, National Chemical Laboratory Pashan Road Pune 411008 India

It is high time to placate the peak demand for an efficient, economic and green fuel in the form of H through photocatalytic water splitting. Several low dimensional materials have been explored for their photocatalytic properties on account of their surface to volume ratio. The present study illustrates the excellent photocatalytic potential of a two-dimensional material, a chemically tempered blue-phosphorene sheet, with single atom thickness and high carrier mobility.

View Article and Find Full Text PDF

Dynamical simulations of molecules and materials have been the route to understand the rearrangement of atoms within them at different temperatures. Born-Oppenheimer molecular dynamical simulations have further helped to comprehend the reaction dynamics at various finite temperatures. We take a case study of SiB and SiB clusters and demonstrate that their finite-temperature behavior is rather mapped to the potential energy surface.

View Article and Find Full Text PDF

MicroRNAs (miRs) are a class of endogenously expressed non-coding RNAs that negatively regulate gene expression within cells and participate in maintaining cellular homeostasis. By targeting 3' UTRs of target genes, individual miRs can control a wide array of gene expressions. Previous research has shed light upon the fact that aberrantly expressed miRs within cells can pertain to diseased conditions, such as cancer.

View Article and Find Full Text PDF

MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3' region of MALAT1 which regulates this function.

View Article and Find Full Text PDF

Insights of Extracellular Vesicles of Mesenchymal Stem Cells: a Prospective Cell-Free Regenerative Medicine for Neurodegenerative Disorders.

Mol Neurobiol

January 2022

System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India.

Mesenchymal stem cells (MSCs) are multipotent, adult stem cells which are found in numerous tissues like the umbilical cord, Wharton's jelly, bone marrow, and adipose tissue. They possess the capacity of self-renewal by dividing and differentiating into various cellular lineages. Their characteristic therapeutic potential exploited so far has made them a desirable candidate in regenerative medicine.

View Article and Find Full Text PDF

Nitrogen activation to reduction on a recyclable V-SAC/BN-graphene heterocatalyst sifted through dual and multiphilic descriptors.

J Colloid Interface Sci

October 2021

Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College area, Gaziabad 201 002, Uttar Pradesh, India. Electronic address:

Efficient reduction of nitrogen to ammonia at a minimal cost would require a recherche catalyst tailored by assimilating the inherent electronic and reactive nature of Single Atom Catalysts (SACs) on heteroatom doped-graphene. A full-scale DFT study accounting for disparate descriptions of atomic orbitals and representation of support, has been carried out to identify the most active and recyclable SAC/B-graphene composite as catalyst for Nitrogen Reduction Reaction (NRR). Dual and Multiphilic descriptors derived reactivity pattern of six different metal SACs V, Fe, Ni, Ru, W and Re on periodic and non-periodic paradigms of pristine and BN-pair doped graphene supports, align with the calculated chemisorption efficacy and activation of N.

View Article and Find Full Text PDF

Notch signaling governs crucial aspects of intercellular communication spanning antigen-presenting cells and T-cells. In this study, we investigate how takes advantage of this pathway to quell host immune responses. We report induction of the Notch ligand Jagged1 in -infected bone marrow macrophages (BMMϕs) and subsequent activation of RBPJκ (also known as RBPJ) in T cells, which in turn upregulates the transcription factor GATA3.

View Article and Find Full Text PDF

GH11 endo-xylanases, due to their inherent structural and biochemical properties, are the key to efficient bioconversion of lignocellulosic biomass into value-added products. A GH11 endo-xylanase (XynB) from strain CAM 21 was cloned, over-expressed and purified (Mw∼24 kDa) using Ni-NTA affinity chromatography. XynB showed optimum activity at pH 7.

View Article and Find Full Text PDF

A simple condensation of chitosan (from shrimp shells) and 4-hydroxybenzaldehyde was performed to yield bio-lubricant additive comprised of azomethine functional groups to be used with paraffin lube oil in industries. The synthesized Schiff base derivative of chitosan (SBC) additive was characterized using a CHN analyzer and FT-IR spectroscopy, and the thermal stability was explored using thermogravimetry. The rheological properties of SBC additives in paraffin oil were studied and are discussed herein.

View Article and Find Full Text PDF

α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency.

View Article and Find Full Text PDF

The analysis of whole genomes has revealed specific geographical distribution of (Mtb) strains across the globe suggestive of unique niche dependent adaptive mechanisms. We provide an important correlation of a genome-based mutation to a molecular phenotype across two predominant clinical Mtb lineages of the Indian subcontinent. We have identified a distinct lineage specific mutation-G247C, translating into an alanine-proline conversion in the A2 gene of Indo-oceanic lineage 1 (L1) Mtb strains, and restoration of cell wall sulfolipids by simple genetic complementation of 2 from lineage 3 (L3) or from H37Rv (lineage 4-L4) attributed the loss of this glycolipid to this specific mutation in Indo-Oceanic L1 Mtb.

View Article and Find Full Text PDF

GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1,6 linked prebiotic α-galactooligosaccharide by transglycosylation.

Int J Biol Macromol

February 2020

Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India. Electronic address:

α-Galactosidases are potent industrial glycoside hydrolases which are relatively less explored for their transglycosylation potential, especially from Lactobacillus genera. A GH36 α-galactosidase from Lactobacillus plantarum WCFS1 was cloned and over expressed in Hi-control Escherichia coli BL21(DE3). Ni-NTA affinity gel chromatography resulted in purified α-galactosidase (LpαG; specific activity 3077.

View Article and Find Full Text PDF