188 results match your criteria: "CSIR Institute of Genomics and Integrative Biology CSIR-IGIB[Affiliation]"

A genome-wide circular RNA transcriptome in rat.

Biol Methods Protoc

September 2021

GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110025, India.

Circular RNAs (circRNAs) are a novel class of noncoding RNAs that back-splice from 5' donor site and 3' acceptor sites to form a circular structure. A number of circRNAs have been discovered in model organisms including human, mouse, , among other organisms. There are a few candidate-based studies on circRNAs in rat, a well-studied model organism as well.

View Article and Find Full Text PDF

Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen's genome architecture.

View Article and Find Full Text PDF

Sequencing of SARS-CoV-2 genomes is crucial for understanding the genetic epidemiology of the COVID-19 pandemic. It is also critical for understanding the evolution of the virus and also for the rapid development of diagnostic tools. The present protocol is a modification of the Illumina COVIDSeq test.

View Article and Find Full Text PDF

The steady increase in global cancer burden has fuelled the development of several modes of treatment for the disease. In the presence of an actionable mutation, targeted therapies offer a method to selectively attack cancer cells, increasing overall efficacy and reducing harmful side effects. However, different drug molecules are in different stages of development, with new molecules obtaining approvals from regulatory agencies each year.

View Article and Find Full Text PDF

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers.

View Article and Find Full Text PDF

Sodium benzoate is one of the widely used food preservatives and its metabolism in the human body has been studied only with the host perspective. Despite the human gut microbiome being considered as a virtual human organ, its role in benzoate metabolism is yet to be elucidated. The current study uses a multi-omic approach to rationalize the role of human gut microbes in benzoate metabolism.

View Article and Find Full Text PDF

Studying respiratory illness-specific microbial signatures and their interaction with other micro-residents could provide a better understanding of lung microbial ecology. Each respiratory illness has a specific disease etiology, however, so far no study has revealed disease-specific microbial markers. The present study was designed to determine disease-specific microbial features and their interactions with other residents in chronic obstructive pulmonary diseases (stable and exacerbated), sarcoidosis, and interstitial lung diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the COVIDSeq protocol for efficient diagnosis and genetic analysis of SARS-CoV-2, highlighting its effectiveness in handling high-throughput testing during the COVID-19 pandemic.
  • Results show that COVIDSeq has a high concordance with traditional RT-PCR tests and even identified cases that were missed by RT-PCR, emphasizing its viability as a confirmatory testing method.
  • The research also contributes to the understanding of the genetic diversity of SARS-CoV-2, reporting new lineages and a high number of unique genetic variants for the first time in India.
View Article and Find Full Text PDF

Chronic systemic exposure to IL6 leads to deregulation of glycolysis and fat accumulation in the zebrafish liver.

Biochim Biophys Acta Mol Cell Biol Lipids

May 2021

CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Inflammation is a constant in Non-Alcoholic Fatty Liver Disease (NAFLD), although their relationship is unclear. In a transgenic zebrafish system with chronic systemic overexpression of human IL6 (IL6-OE) we show that inflammation can cause intra-hepatic accumulation of triglycerides. Transcriptomics and proteomics analysis of the IL6-OE liver revealed a deregulation of glycolysis/gluconeogenesis pathway, especially a striking down regulation of the glycolytic enzyme aldolase b.

View Article and Find Full Text PDF

Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy is a non-progressive disorder characterized by distal tremors. Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy has been reported globally with different genetic predispositions of autosomal dominant inheritance with a high degree of penetrance. In south India, Autosomal Dominant Cortical Tremor, Myoclonus and Epilepsy has been reported in a large cohort of 48 families, in which the genetic defect was not identified.

View Article and Find Full Text PDF
Article Synopsis
  • The Arab population, consisting of over 420 million people, exhibits significant genetic diversity and a notable prevalence of genetic diseases, especially autosomal recessive disorders.
  • There is currently a lack of comprehensive databases documenting clinically relevant genetic variants from this population, which hinders accurate diagnosis and disease prevention.
  • To address this issue, the DALIA database has been created to compile genetic variants associated with diseases in the Arab population, serving as a valuable resource for clinical interpretation and genetic research.
View Article and Find Full Text PDF

Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3'UTR.

View Article and Find Full Text PDF

Long noncoding RNAs are well studied for their regulatory actions through interaction with DNA regulating biological roles of DNA, RNA, or protein. However, direct binding of lncRNA with DNA is rarely demonstrated in experiments. The present protocol explains genome wide computational strategies to choose lncRNAs that can bind directly to the chromatin by forming highly stable DNA-DNA-RNA triplexes.

View Article and Find Full Text PDF

Background: From an isolated epidemic, coronavirus disease 2019 has now emerged as a global pandemic. The availability of genomes in the public domain after the epidemic provides a unique opportunity to understand the evolution and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus across the globe.

Methods: We performed whole-genome sequencing of 303 Indian isolates, and we analyzed them in the context of publicly available data from India.

View Article and Find Full Text PDF

Vanillin is a phenolic food additive commonly used for flavor, antimicrobial, and antioxidant properties. Though it is one of the widely used food additives, strategies of the human gut microbes to evade its antimicrobial activity await extensive elucidation. The current study explores the human gut microbiome with a multi-omics approach to elucidate its composition and metabolic machinery to counter vanillin bioactivity.

View Article and Find Full Text PDF

Analysis of the potential impact of genomic variants in global SARS-CoV-2 genomes on molecular diagnostic assays.

Int J Infect Dis

January 2021

CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

An epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus diseases (C0VID-19) initially reported in Wuhan, China has rapidly emerged into a global pandemic affecting millions of people worldwide. Molecular detection of SARS-CoV-2 using reverse transcription polymerase chain reaction (RT-PCR) forms the mainstay in screening, diagnosis and epidemiology of the disease. Since the virus evolves by accumulating base substitutions, mutations in the viral genome could possibly affect the accuracy of RT-PCR-based detection assays.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has challenged the research community globally to innovate, interact, and integrate findings across hierarchies. Research on SARS-CoV-2 has produced an abundance of data spanning multiple parallels, including clinical data, SARS-CoV-2 genome architecture, host response captured through transcriptome and genetic variants, microbial co-infections (metagenome), and comorbidities. Disease phenotypes in the case of COVID-19 present an intriguing complexity that includes a broad range of symptomatic to asymptomatic individuals, further compounded by a vast heterogeneity within the spectrum of clinical symptoms displayed by the symptomatic individuals.

View Article and Find Full Text PDF

Unlabelled: The human gut microbiome is a stratified and resilient ecosystem co-inhabited by a diverse and dynamic pool of microorganisms. Microbial selection, establishment, and colonization are modulated through a complex molecular network of host-microbial interactions. These molecular bioprocesses ensure the taxonomic composition of the mature human gut microbiome.

View Article and Find Full Text PDF

Vitiligo, a common skin disorder, is characterized by the loss of functional melanocytes resulting in the depigmentation of skin. Previous studies have demonstrated molecular and architectural alterations in the epidermal keratinocytes upon loss of melanocytes. The physiological implications of these "altered" keratinocytes are yet not known.

View Article and Find Full Text PDF

Unlabelled: Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant cerebellar ataxia caused by nucleotide ATTCT expansion in gene. SCA10 has been reported in patients of cerebellar ataxia from Amerindian/Latin America and in East Asian ancestry. A common founder has been ascribed to the origin of ATTCT repeat expansion mutation in both the population.

View Article and Find Full Text PDF