157 results match your criteria: "CSIC-University of Salamanca[Affiliation]"

Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube.

Front Immunol

March 2021

Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain.

CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID).

View Article and Find Full Text PDF

Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients.

View Article and Find Full Text PDF

Vav1 works both as a catalytic Rho GTPase activator and an adaptor molecule. These functions, which are critical for T cell development and antigenic responses, are tyrosine phosphorylation-dependent. However, it is not known whether other posttranslational modifications can contribute to the regulation of the biological activity of this protein.

View Article and Find Full Text PDF

The stem cells located in the hair follicle bulge area are critical for skin regeneration and repair. To date, little is known about the evolution of the transcriptome of these cells across time. Here, we have combined genome-wide expression analyses and a variety of in silico tools to determine the age-dependent evolution of the transcriptome of those cells.

View Article and Find Full Text PDF

Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis.

Nat Commun

January 2020

Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.

Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process in human disease. Here we report a preribosome purification and tagging strategy that overcomes some of the existing technical difficulties.

View Article and Find Full Text PDF

Phosphatidylinositol-5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs.

View Article and Find Full Text PDF

The role of Rad53 in response to a DNA lesion is central for the accurate orchestration of the DNA damage response. Rad53 activation relies on its phosphorylation by Mec1 and its own autophosphorylation in a manner dependent on the adaptor Rad9. While the mechanism behind Rad53 activation has been well documented, less is known about the processes that counteract its activity along the repair of a DNA adduct.

View Article and Find Full Text PDF

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • Combining BRAF and MEK inhibitors has improved survival in metastatic melanoma, but resistance poses a significant challenge.
  • Researchers investigated resistance mechanisms in melanoma cells using the ERK inhibitor SCH772984, finding that resistant cells not only resisted SCH but also other BRAF/MEK treatments.
  • Resistance was linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which countered the effectiveness of Erk1/2 inhibition, suggesting potential targets for overcoming this resistance.
View Article and Find Full Text PDF

Multiple crosstalk between peripheral organs and the nervous system are required to maintain physiological and metabolic homeostasis. Using Vav3-deficient mice as a model for chronic sympathoexcitation-associated disorders, we report here that afferent fibers of the hepatic branch of the vagus nerve are needed for the development of the peripheral sympathoexcitation, tachycardia, tachypnea, insulin resistance, liver steatosis and adipose tissue thermogenesis present in those mice. This neuronal pathway contributes to proper activity of the rostral ventrolateral medulla, a sympathoregulatory brainstem center hyperactive in Vav3-/- mice.

View Article and Find Full Text PDF

Editorial overview: New concepts and experimental approaches to understand development, tissue regeneration, and human disease.

Curr Opin Cell Biol

December 2018

Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain. Electronic address:

View Article and Find Full Text PDF

RHO GDP/GTP exchange factors, including VAV1, are considered key protumorigenic factors. Against this paradigm, we have found that VAV1 plays tumor suppressor roles by buffering NOTCH1 signals in thymocytes. The silencing of this pathway contributes to the pathogenesis of T cell acute lymphoblastic leukemia of the early cortical, TLX subtype.

View Article and Find Full Text PDF

The bidirectional regulation of epithelial-mesenchymal transitions (EMT) is key in tumorigenesis. Rho GTPases regulate this process via canonical pathways that impinge on the stability of cell-to-cell contacts, cytoskeletal dynamics, and cell invasiveness. Here, we report that the Rho GTPase activators Vav2 and Vav3 utilize a new Rac1-dependent and miR-200c-dependent mechanism that maintains the epithelial state by limiting the abundance of the Zeb2 transcriptional repressor in breast cancer cells.

View Article and Find Full Text PDF

Deregulated RAS signaling is associated with increasing numbers of congenital diseases usually referred to as RASopathies. The spectrum of genes and mutant alleles causing these diseases has been significantly expanded in recent years. This progress has triggered new challenges, including the origin and subsequent selection of the mutations driving these diseases, the specific pathobiological programs triggered by those mutations, the type of correlations that exist between the genotype and the clinical features of patients, and the ancillary genetic factors that influence the severity of the disease in patients.

View Article and Find Full Text PDF

RHO GTPases in cancer: known facts, open questions, and therapeutic challenges.

Biochem Soc Trans

June 2018

Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain

RHO GTPases have been traditionally associated with protumorigenic functions. While this paradigm is still valid in many cases, recent data have unexpectedly revealed that RHO proteins can also play tumor suppressor roles. RHO signaling elements can also promote both pro- and antitumorigenic effects using GTPase-independent mechanisms, thus giving an extra layer of complexity to the role of these proteins in cancer.

View Article and Find Full Text PDF

R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes.

Sci Signal

May 2018

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Upon antigen recognition within peripheral lymphoid organs, B cells interact with T cells and other immune cells to transiently form morphological structures called germinal centers (GCs), which are required for B cell clonal expansion, immunoglobulin class switching, and affinity maturation. This process, known as the GC response, is an energetically demanding process that requires the metabolic reprogramming of B cells. We showed that the Ras-related guanosine triphosphate hydrolase (GTPase) R-Ras2 (also known as TC21) plays an essential, nonredundant, and B cell-intrinsic role in the GC response.

View Article and Find Full Text PDF

In breast cancer, it is unclear the functional modifications at a transcriptomic level that are associated with the evolution from epithelial cells and ductal carcinoma (DCIS) to basal-like tumors. By applying weighted gene co-expression network analysis (WGCNA), we identified 17 gene co-expression modules in normal, DCIS and basal-like tumor samples. We then correlated the expression pattern of these gene modules with disease progression from normal to basal-like tumours and found eight modules exhibiting a high and statistically significant correlation.

View Article and Find Full Text PDF

Rho GDP/GTP exchange factors (GEFs), the enzymes that trigger the stimulation of Rho GTPases during cell signaling, are widely deemed as potential therapeutic targets owing to their protumorigenic functions. However, the sparse use of animal models has precluded a full understanding of their pathophysiological roles at the organismal level. In a recent article in , we have reported that the Vav1 GEF unexpectedly acts as a tumor suppressor by mediating the noncatalytic nucleation of cytoplasmic complexes between the E3 ubiquitin ligase Cbl-b and the active Notch1 intracellular domain (ICN1).

View Article and Find Full Text PDF

A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia.

Cancer Cell

November 2017

Centro de Investigación del Cáncer, CSIC - University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, CSIC - University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC - University of Salamanca, 37007 Salamanca, Spain. Electronic address:

Rho guanine exchange factors (GEFs), the enzymes that stimulate Rho GTPases, are deemed as potential therapeutic targets owing to their protumorigenic functions. However, the understanding of the spectrum of their pathobiological roles in tumors is still very limited. We report here that the GEF Vav1 unexpectedly possesses tumor-suppressor functions in immature T cells.

View Article and Find Full Text PDF

Ribosome biogenesis and cancer: basic and translational challenges.

Curr Opin Genet Dev

February 2018

Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain. Electronic address:

Increasing evidence suggests that alterations in ribosome biogenesis (RiBi) confer competitive advantages to cancer cells. This has led to the discovery of regulatory layers mediated by signaling proteins, oncoproteins, and tumor suppressors whose deregulation leads to increased RiBi rates in cancer cells. In addition to boosting protein synthesis, these alterations probably contribute to shape the protumorigenic proteome of cancer cells.

View Article and Find Full Text PDF

Consumption of Brassica (Cruciferae) vegetables is associated with a reduced risk of cancer, but identification of the active components and insights into the underlying molecular events are scarce. Here we found that an extract of Lepidium latifolium, a cruciferous plant native to southern Europe, Mediterranean countries and Asia, showed in vitro cytotoxic activity, inducing caspase-dependent apoptosis, in a variety of human tumor cells, and the plant juice showed in vivo antitumor activity in a HT-29 human colon cancer xenograft mouse model. The epithionitrile 1-cyano-2,3-epithiopropane (CETP) was identified as the major active cancer cell-killing principle of L.

View Article and Find Full Text PDF

Ovarian cancer is characterized by frequent mutations at TP53. These tumors also harbor germline mutations at homologous recombination repair genes, so they rely on DNA-damage checkpoint proteins, like the checkpoint kinase 1 (CHEK1) to induce G arrest. In our study, by using an approach, we identified a synthetic lethality interaction between CHEK1 and mitotic aurora kinase A (AURKA) inhibitors.

View Article and Find Full Text PDF

Antitumoral effect of Ocoxin in hepatocellular carcinoma.

Oncol Lett

August 2017

Institute of Molecular and Cellular Cancer Biology, CSIC-University of Salamanca, 37007 Salamanca, Spain.

Hepatocellular carcinoma (HCC) is becoming one of the most prevalent types of cancer worldwide. The most efficient types of treatment at present include surgical resection and liver transplantation, but these treatments may only be used in a small percentage of patients. In order to identify novel therapeutic strategies for this disease, the present study explored the potential antitumoral effect of Ocoxin® oral solution (OOS) in HCC.

View Article and Find Full Text PDF

Coupling TOR to the Cell Cycle by the Greatwall-Endosulfine-PP2A-B55 Pathway.

Biomolecules

August 2017

Institute of Functional Biology and Genomics (IBFG), CSIC/University of Salamanca, 37007 Salamanca, Spain.

Cell growth and division are two processes tightly coupled in proliferating cells. While Target of Rapamycin (TOR) is the master regulator of growth, the cell cycle is dictated by the activity of the cyclin-dependent kinases (CDKs). A long-standing question in cell biology is how these processes may be connected.

View Article and Find Full Text PDF

Focal accumulation of preribosomes outside the nucleolus during metaphase-anaphase in budding yeast.

RNA

September 2017

Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain.

contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis.

View Article and Find Full Text PDF