157 results match your criteria: "CSIC-University of Salamanca[Affiliation]"

Loss of Aryl Hydrocarbon Receptor Favors -Driven Non-Small Cell Lung Cancer.

Cancers (Basel)

August 2021

Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain.

Non-small cell lung adenocarcinoma (NSCLC) bearing mutations is one of the most prevalent types of lung cancer worldwide. Aryl hydrocarbon receptor (AHR) expression varies in human lung tumors and has been associated with either increased or reduced lung metastasis. In the mouse, Ahr also adjusts lung regeneration upon injury by limiting the expansion of resident stem cells.

View Article and Find Full Text PDF

Genetic evidence suggests that three members of the VAV family (VAV1, VAV2 and VAV3) of signal transduction proteins could play important roles in rheumatoid arthritis. However, it is not known currently whether the inhibition of these proteins protects against this disease and, if so, the number of family members that must be eliminated to get a therapeutic impact. To address this issue, we have used a collection of single and compound Vav family knockout mice in experimental models for antigen-dependent (methylated bovine serum albumin injections) and neutrophil-dependent (Zymosan A injections) rheumatoid arthritis in mice.

View Article and Find Full Text PDF

The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction.

Genes (Basel)

May 2021

Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.

Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively.

View Article and Find Full Text PDF

The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers.

View Article and Find Full Text PDF

European Journal of Cell Biology - Editorial.

Eur J Cell Biol

May 2021

Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain. Electronic address:

View Article and Find Full Text PDF

Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen.

Cell Rep

March 2021

Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain. Electronic address:

T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells.

View Article and Find Full Text PDF

The role of mA, mC and Ψ RNA modifications in cancer: Novel therapeutic opportunities.

Mol Cancer

January 2021

Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain.

RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development.

View Article and Find Full Text PDF

Targeting cytoskeletal phosphorylation in cancer.

Explor Target Antitumor Ther

June 2021

Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.

Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer.

View Article and Find Full Text PDF

DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis.

View Article and Find Full Text PDF

and Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features.

Cancers (Basel)

November 2020

Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.

and () mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls.

View Article and Find Full Text PDF

Background: Multiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow.

View Article and Find Full Text PDF

Multiparametric Analysis of Focal Adhesions in Bidimensional Substrates.

Methods Mol Biol

March 2021

Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain.

Focal adhesions in planar substrates constitute an excellent cellular resource to evaluate different parameters related to cell morphology, cytoskeletal organization, and adhesive strength. However, their intrinsic heterogeneity in terms of size, molecular composition, orientation, and so on complicates their analysis. Here, we describe a simple and straightforward ImageJ/Fiji-based method to quantify several parameters that describe the morphology and relative composition of focal adhesions.

View Article and Find Full Text PDF

Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition.

View Article and Find Full Text PDF
Article Synopsis
  • Regenerative proliferation and poor differentiation in head and neck squamous cell carcinoma (hnSCC) are linked to a negative prognosis, but the specific pathways involved are not well understood.
  • The study identifies the RHO GTPase activator VAV2 as a key player in promoting these traits in skin and oral mucosa keratinocytes, as well as in cells derived from hnSCC patients.
  • High levels of VAV2 and its associated gene signatures correlate with poor outcomes in hnSCC patients, suggesting a potential target for therapeutic intervention.
View Article and Find Full Text PDF

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood.

View Article and Find Full Text PDF

We have recently shown that VAV2, a guanosine nucleotide exchange factor that catalyzes the stimulation step of RHO GTPases, is involved in a stem cell-like (SCL) regenerative proliferation program that is important for the development and subsequent maintenance of the tumorigenesis of both cutaneous (cSCC) and head and neck squamous cell carcinomas (hnSCC). In line with this, we have observed that the levels of the mRNA and VAV2-regulated gene signatures are associated with poor prognosis in the case of human papillomavirus-negative hnSCC patients. These results suggest that the SCL program elicited by VAV2 in those cells can harbor therapeutically actionable downstream targets.

View Article and Find Full Text PDF

HERC Ubiquitin Ligases in Cancer.

Cancers (Basel)

June 2020

Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.

HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses.

View Article and Find Full Text PDF

The gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the gene cause an array of autosomal dominant disorders, globally known as -related diseases (-RD).

View Article and Find Full Text PDF

The current paradigm holds that the inhibition of Rho guanosine nucleotide exchange factors (GEFs), the enzymes that stimulate Rho GTPases, can be a valuable therapeutic strategy to treat Rho-dependent tumors. However, formal validation of this idea using in vivo models is still missing. In this context, it is worth remembering that many Rho GEFs can mediate both catalysis-dependent and independent responses, thus raising the possibility that the inhibition of their catalytic activities might not be sufficient per se to block tumorigenic processes.

View Article and Find Full Text PDF

Detection of Circulating Tumor Plasma Cells in Monoclonal Gammopathies: Methods, Pathogenic Role, and Clinical Implications.

Cancers (Basel)

June 2020

Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- University of Salamanca, 37007 Salamanca, Spain.

Cancer dissemination and distant metastasis most frequently require the release of tumor cells into the blood circulation, both in solid tumors and most hematological malignancies, including plasma cell neoplasms. However, detection of blood circulating tumor cells in solid tumors and some hematological malignancies, such as the majority of mature/peripheral B-cell lymphomas and monoclonal gammopathies, has long been a challenge due to their very low frequency. In recent years, the availability of highly-sensitive and standardized methods for the detection of circulating tumor plasma cells (CTPC) in monoclonal gammopathies, e.

View Article and Find Full Text PDF

Active non-muscle myosin II (NMII) enables migratory cell polarization and controls dynamic cellular processes, such as focal adhesion formation and turnover and cell division. Filament assembly and force generation depend on NMII activation through the phosphorylation of Ser19 of the regulatory light chain (RLC). Here, we identify amino acid Tyr (Y) 155 of the RLC as a novel regulatory site that spatially controls NMII function.

View Article and Find Full Text PDF

Genomic profiling of sporadic liver metastatic colorectal cancer.

Semin Cancer Biol

June 2021

Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain. Electronic address:

Sporadic colorectal cancer (sCRC) is the third leading cause of cancer death in the Western world. Approximately, a quarter of sCRC patients present metastatic dissemination at the moment of diagnosis, the liver being the most frequently affected organ. Additionally, this group of CRC patients is characterized by a worse prognosis.

View Article and Find Full Text PDF

In the last years, the development of new drugs in oncology has evolved notably. In particular, drug development has shifted from empirical screening of active cytotoxic compounds to molecularly targeted drugs blocking specific biologic pathways that drive cancer progression and metastasis. Using a rational design approach, our group has developed 1A-116 as a promising Rac1 inhibitor, with antitumoral and antimetastatic effects in several types of cancer.

View Article and Find Full Text PDF

Emerging roles of novel small non-coding regulatory RNAs in immunity and cancer.

RNA Biol

August 2020

Centro De Investigación Del Cáncer and Instituto De Biología Molecular Y Celular Del Cáncer, Consejo Superior De Investigaciones Científicas (CSIC) - University of Salamanca, Salamanca, Spain.

The term small non-coding RNAs (ncRNAs) refers to all those RNAs that even without encoding for a protein, can play important functional roles. Transfer RNA and ribosomal RNA-derived fragments (tRFs and rRFs, respectively) are an emerging class of ncRNAs originally considered as simple degradation products, which though play important roles in stress responses, signalling, or gene expression. They control all levels of gene expression regulating transcription and translation and affecting RNA processing and maturation.

View Article and Find Full Text PDF

Meeting Report - Workshop 'Actin-based mechanosensation and force generation in health and disease'.

J Cell Sci

March 2020

Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 370-07 Salamanca, Spain

International experts in the fields of cellular motility, force generation and mechanosensation met in Baeza, a UNESCO World Heritage city, from the 10th to the 13th of November, 2019. The meeting, part of the 'Current Trends in Biomedicine' series, took place at the 'Sede Antonio Machado', a beautiful 17th century building turned into a conference center of the Universidad Internacional de Andalucía (UNIA), which sponsored the event. The meeting was organized by Alexis Gautreau, Pekka Lappalainen and Miguel Vicente-Manzanares, with the support of the European Molecular Biology Organization (EMBO) and the Spanish-based company IMPETUX.

View Article and Find Full Text PDF