6 results match your criteria: "CSIC-Madrid Autonomous University[Affiliation]"
Noncoding RNA
March 2022
Genome Dynamics and Function Program, Genome Decoding Department, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Madrid Autonomous University, 28049 Madrid, Spain.
Circular RNAs (circRNAs) are suggested to play a discriminative role between some stages of thymocyte differentiation. However, differential aspects of the stage of mature single-positive thymocytes remain to be explored. The purpose of this study is to investigate the differential expression pattern of circRNAs in three different development stages of human thymocytes, including mature single-positive cells, and perform predictions in silico regarding the ability of specific circRNAs when controlling the expression of genes involved in thymocyte differentiation.
View Article and Find Full Text PDFBMC Cancer
October 2019
Department of Cellular Biology and Immunology, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Madrid Autonomous University, Madrid, 28049, Spain.
Background: Acute T-cell lymphoblastic leukaemia (T-ALL) is an aggressive disorder derived from immature thymocytes. The variability observed in clinical responses on this type of tumours to treatments, the high toxicity of current protocols and the poor prognosis of patients with relapse or refractory make it urgent to find less toxic and more effective therapies in the context of a personalized medicine of precision.
Methods: Whole exome sequencing and RNAseq were performed on DNA and RNA respectively, extracted of a bone marrow sample from a patient diagnosed with tumour primary T-ALL and double negative thymocytes from thymus control samples.
Sci Rep
March 2019
Department of Cellular Biology and Immunology, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Madrid Autonomous University, Madrid, 28049, Spain.
Fusions transcripts have been proven to be strong drivers for neoplasia-associated mutations, although their incidence in T-cell lymphoblastic lymphoma needs to be determined yet. Using RNA-Seq we have selected 55 fusion transcripts identified by at least two of three detection methods in the same tumour. We confirmed the existence of 24 predicted novel fusions that had not been described in cancer or normal tissues yet, indicating the accuracy of the prediction.
View Article and Find Full Text PDFBMC Cancer
April 2018
Department of Cellular Biology and Immunology, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Madrid Autonomous University, 28049, Madrid, Spain.
Background: Precursor T-cell lymphoblastic lymphomas (T-LBL) are rare aggressive hematological malignancies that mainly develop in children. As in other cancers, the loss of cell cycle control plays a prominent role in the pathogenesis in these malignancies that is primarily attributed to loss of CDKN2A (encoding protein p16INK4A). However, the impact of the deregulation of other genes such as CDKN1C, E2F1, and TP53 remains to be clarified.
View Article and Find Full Text PDFCancer Cell
November 2017
Centro de Investigación del Cáncer, CSIC - University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, CSIC - University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC - University of Salamanca, 37007 Salamanca, Spain. Electronic address:
Rho guanine exchange factors (GEFs), the enzymes that stimulate Rho GTPases, are deemed as potential therapeutic targets owing to their protumorigenic functions. However, the understanding of the spectrum of their pathobiological roles in tumors is still very limited. We report here that the GEF Vav1 unexpectedly possesses tumor-suppressor functions in immature T cells.
View Article and Find Full Text PDFNat Commun
May 2014
1] Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain [2] Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain.
R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma.
View Article and Find Full Text PDF