297 results match your criteria: "CSIC and the Barcelona Institute of Science and Technology[Affiliation]"
Lab Chip
December 2024
Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates.
View Article and Find Full Text PDFJ Neural Eng
November 2024
Institute of Biomedical Engineering, Boğaziçi University, İstanbul 34684, Turkey.
Brain-computer interfaces (BCI) are promising for severe neurological conditions and there are ongoing efforts to develop state-of-the-art neural interfaces, hardware, and software tools. We tested the potential of novel reduced graphene oxide (rGO) electrodes implanted epidurally over the hind limb representation of the primary somatosensory (S1) cortex of rats, and compared them to commercial platinum-iridium (Pt-Ir) 16-channel electrodes (active site diameter: 25m).Motor and somatosensory information was decoded offline from microelectrocorticography (ECoG) signals recorded while unrestrained rats performed a simple behavioral task: pressing a lever and the subsequent vibrotactile stimulation of the glabrous skin at three displacement amplitude levels and at two sinusoidal frequencies.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Herein, we present a novel methodology for synthesizing metal clusters or secondary building units (SBUs) that are subsequently employed to construct innovative metal-organic frameworks (MOFs) via dynamic covalent chemistry. Our approach entails extraction of SBUs from preformed MOFs through complete disassembly by clip-off chemistry. The initial MOF precursor is designed to incorporate the desired SBU, connected exclusively by cleavable linkers (in this study, with olefinic bonds).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Chem Sci
May 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
Most reported porous materials are either extended networks or monomeric discrete cavities; indeed, porous structures of intermediate size have scarcely been explored. Herein, we present the stepwise linkage of discrete porous metal-organic cages or polyhedra (MOPs) into oligomeric structures with a finite number of MOP units. The synthesis of these new oligomeric porous molecules entails the preparation of 1-connected (1-c) MOPs with only one available azide reactive site on their surface.
View Article and Find Full Text PDFChemistry
August 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
The activity of catalytic nanoparticles is strongly dependent on their surface chemistry, which controls colloidal stability and substrate diffusion toward catalytic sites. In this work, we studied how the outer surface chemistry of nanostructured Rh(II)-based metal-organic cages or polyhedra (Rh-MOPs) impacts their performance in homogeneous catalysis. Specifically, through post-synthetic coordination of aliphatic imidazole ligands onto the exohedral Rh(II) axial sites of Rh-MOPs, we solubilized a cuboctahedral Rh-MOP in dichloromethane, thereby enabling its use as a homogeneous catalyst.
View Article and Find Full Text PDFAdv Mater
May 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
Infection diseases are a major threat to global public health, with nosocomial infections being of particular concern. In this context, antimicrobial coatings emerge as a promising prophylactic strategy to reduce the transmission of pathogens and control infections. Here, antimicrobial door handle covers to prevent cross-contamination are prepared by incorporating iodine-loaded UiO-66 microparticles into a potentially biodegradable polyurethane polymer (Baycusan eco E 1000).
View Article and Find Full Text PDFBiosens Bioelectron
August 2024
Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain. Electronic address:
Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication.
View Article and Find Full Text PDFACS Energy Lett
April 2024
Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty Strasse 1, 85748 Garching bei Munich,Germany.
The commercial development of perovskite solar cells (PSCs) has been significantly delayed by the constraint of performing time-consuming degradation studies under real outdoor conditions. These are necessary steps to determine the device lifetime, an area where PSCs traditionally suffer. In this work, we demonstrate that the outdoor degradation behavior of PSCs can be predicted by employing accelerated indoor stability analyses.
View Article and Find Full Text PDFInorg Chem
March 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH [Zn(bpipa)(NH-bdc)], based on ,'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH group in TMU-27-NH.
View Article and Find Full Text PDFBiosens Bioelectron
May 2024
Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain. Electronic address:
Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices.
View Article and Find Full Text PDFJ Am Chem Soc
February 2024
Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain.
Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C. In this work, the supramolecular mask approach is applied for the first time to C, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles.
View Article and Find Full Text PDFNano Lett
January 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)Te with 2D FM FeGeTe (FGT).
View Article and Find Full Text PDFMethods Mol Biol
December 2023
Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain.
Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO.
View Article and Find Full Text PDFChem Sci
November 2023
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
Reticular materials constructed from regular molecular building blocks (MBBs) have been widely explored in the past three decades. Recently, there has been increasing interest in the assembly of novel, intricate materials using less-symmetric ligands; however, current methods for predicting structure are not amenable to this increased complexity. To address this gap, we propose herein a generalised version of the net-clipping approach for anticipating the topology of metal-organic frameworks (MOFs) assembled from organic linkers and different polygonal and polyhedral MBBs.
View Article and Find Full Text PDFAdv Mater
January 2024
Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria.
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation.
View Article and Find Full Text PDFSmall Methods
January 2024
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Barcelona, 08193, Spain.
Despite the impressive advances in the synthesis of atomically precise graphene nanostructures witnessed during the last decade, advancing in compositional complexity faces major challenges. The concept of introducing the desired functional groups or dopants in the molecular precursor often fails due to their lack of stability during the reaction path. Here, a study on the stability of different pyridine and pyrimidine moieties during the on-surface synthesis of graphene nanoribbons on Au(111) is presented.
View Article and Find Full Text PDFNat Commun
October 2023
Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
Metal clusters supported on TiO are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen.
View Article and Find Full Text PDFRSC Adv
September 2023
Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
Our study unveils an innovative methodology that merges catechols with mono- and disaccharides, yielding a diverse array of compounds. This strategic fusion achieves robust yields and introduces ligands with a dual nature: encompassing both the chelating attributes of catechols and the recognition capabilities of carbohydrates. This synergistic design led us to couple one of the novel ligands with an Fe(iii) salt, resulting in the creation of Coordination Glycopolymer Particles (CGPs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
Clip-off Chemistry is a synthetic strategy that our group previously developed to obtain new molecules and materials through selective cleavage of bonds. Herein, we report recent work to expand Clip-off Chemistry by introducing into it a retrosynthetic analysis step that, based on virtual extension of the products through cleavable bonds, enables one to define the required precursor materials. As proof-of-concept, we have validated our new approach by synthesising and characterising four aldehyde-functionalised Rh(II)-based complexes: a homoleptic cluster; a cis-disubstituted paddlewheel cluster; a macrocycle; and a crown.
View Article and Find Full Text PDFChemistry
October 2023
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
The surface chemistry of Metal-Organic Polyhedra (MOPs) is crucial to their physicochemical properties because it governs how they interact with external substances such as solvents, synthetic organic molecules, metal ions, and even biomolecules. Consequently, the advancement of synthetic methods that facilitate the incorporation of diverse functional groups onto MOP surfaces will significantly broaden the range of properties and potential applications for MOPs. This study describes the use of copper(I)-catalysed, azide-alkyne cycloaddition (CuAAC) click reactions to post-synthetically modify the surface of alkyne-functionalised cuboctahedral MOPs.
View Article and Find Full Text PDFChem Commun (Camb)
June 2023
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
Metal-organic frameworks (MOFs) based on high-connected nets are generally very attractive due to their combined robustness and porosity. Here, we describe the synthesis of BCN-348, a new high-connected Zr-MOF built from an 8-connected (8-c) cubic Zr-oxocluster and an 8-c organic linker. BCN-348 contains a minimal edge-transitive 3,4,8-c eps net, and combines mesoporosity with thermal and hydrolytic stability.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2023
Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
J Am Chem Soc
April 2023
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Recent advances on surface-assisted synthesis have demonstrated that arrays of nanometer wide graphene nanoribbons can be laterally coupled with atomic precision to give rise to a highly anisotropic nanoporous graphene structure. Electronically, this graphene nanoarchitecture can be conceived as a set of weakly coupled semiconducting 1D nanochannels with electron propagation characterized by substantial interchannel quantum interferences. Here, we report the synthesis of a new nanoporous graphene structure where the interribbon electronic coupling can be controlled by the different degrees of freedom provided by phenylene bridges that couple the conducting channels.
View Article and Find Full Text PDFSmall
December 2023
Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy.
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte.
View Article and Find Full Text PDF