144 results match your criteria: "CONICET - Partner Institute of the Max Planck Society[Affiliation]"

A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function.

View Article and Find Full Text PDF

Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): a seven-year retrospective.

Stem Cell Res Ther

October 2017

Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA, 90095-1740, USA.

Multilineage differentiating stress enduring (Muse) cells, discovered in the spring of 2010 at Tohoku University in Sendai, Japan, were quickly recognized by scientists as a possible source of pluripotent cells naturally present within mesenchymal tissues. Muse cells normally exist in a quiescent state, singularly activated by severe cellular stress in vitro and in vivo. Muse cells have the capacity for self-renewal while maintaining pluripotent cell characteristics indicated by the expression of pluripotent stem cell markers.

View Article and Find Full Text PDF

The transcriptional regulator FUSE Binding Protein 1 (FUBP1) is overexpressed in more than 80% of all human hepatocellular carcinomas (HCCs) and other solid tumor entities including prostate and colorectal carcinoma. FUBP1 expression is required for HCC tumor cell expansion, and it functions as an important pro-proliferative and anti-apoptotic oncoprotein that binds to the single-stranded DNA sequence FUSE to regulate the transcription of a variety of target genes. In this study, we screened an FDA-approved drug library and discovered that the Topoisomerase I (TOP1) inhibitor camptothecin (CPT) and its derivative 7-ethyl-10-hydroxycamptothecin (SN-38), the active irinotecan metabolite that is used in the clinics in combination with other chemotherapeutics to treat carcinoma, inhibit FUBP1 activity.

View Article and Find Full Text PDF

αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson's disease.

Sci Rep

July 2017

Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina.

The etiology of Parkinson's disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities.

View Article and Find Full Text PDF

Discovery of novel dengue virus entry inhibitors via a structure-based approach.

Bioorg Med Chem Lett

August 2017

Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Godoy Cruz 2390, Ciudad de Buenos Aires, Argentina. Electronic address:

Dengue is a mosquito-borne virus that has become a major public health concern worldwide in recent years. However, the current treatment for dengue disease is only supportive therapy, and no specific antivirals are available to control the infections. Therefore, the need for safe and effective antiviral drugs against this virus is of utmost importance.

View Article and Find Full Text PDF

In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a 'segmentation clock', in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors.

View Article and Find Full Text PDF

Cell movement and intercellular signaling occur simultaneously to organize morphogenesis during embryonic development. Cell movement can cause relative positional changes between neighboring cells. When intercellular signals are local such cell mixing may affect signaling, changing the flow of information in developing tissues.

View Article and Find Full Text PDF

AGC kinases, mechanisms of regulation ‎and innovative drug development.

Semin Cancer Biol

February 2018

Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation.

View Article and Find Full Text PDF

The development of new imaging and optogenetics techniques to study the dynamics of large neuronal circuits is generating datasets of unprecedented volume and complexity, demanding the development of appropriate analysis tools. We present a comprehensive computational workflow for the analysis of neuronal population calcium dynamics. The toolbox includes newly developed algorithms and interactive tools for image pre-processing and segmentation, estimation of significant single-neuron single-trial signals, mapping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration of population dynamics, and analysis of clusters' features against surrogate control datasets.

View Article and Find Full Text PDF

From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons.

View Article and Find Full Text PDF

Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells).

View Article and Find Full Text PDF

Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor.

View Article and Find Full Text PDF

Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells.

View Article and Find Full Text PDF

The purinergic P2X7 receptor (P2X7R) has attracted considerable interest as a potential target for various central nervous system (CNS) pathologies including affective and neurodegenerative disorders. To date, the distribution and cellular localization of the P2X7R in the brain are not fully resolved and a matter of debate mainly due to the limitations of existing tools. However, this knowledge should be a prerequisite for understanding the contribution of the P2X7R to brain disease.

View Article and Find Full Text PDF

Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a plant-derived GR-ligand with marked dissociative properties.

View Article and Find Full Text PDF

The factors triggering pancreatic neuroendocrine tumor (PanNET) progression are largely unknown. Here we investigated the role and mechanisms of the sumoylation enhancing protein RSUME in PanNET tumorigenesis. Immunohistochemical studies showed that RSUME is strongly expressed in normal human pancreas, in particular in β-cells.

View Article and Find Full Text PDF

KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors.

View Article and Find Full Text PDF

Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

J Cell Biol

July 2016

Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina

Article Synopsis
  • Corticotropin-releasing hormone receptor 1 (CRHR1) activates different signaling pathways, relying on both transmembrane adenylyl cyclases and a unique soluble adenylyl cyclase (sAC) for producing cyclic AMP (cAMP).
  • While both types of adenylyl cyclases are necessary for the initial activation of extracellular signal regulated kinase 1/2, only sAC is crucial for the sustained signaling that follows CRH stimulation and receptor internalization.
  • The study highlights that CRH-activated CRHR1 can generate cAMP after being internalized, suggesting that cAMP signaling can occur within the cell rather than just at the surface, with sAC serving
View Article and Find Full Text PDF

Unlabelled: The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world.

View Article and Find Full Text PDF

FK506-binding protein 51 (FKBP51) regulates the activity of the glucocorticoid receptor (GR), and is therefore a key mediator of the biological actions of glucocorticoids. However, the understanding of the molecular mechanisms that govern its activity remains limited. Here, we uncover a novel regulatory switch for GR activity by the post-translational modification of FKBP51 with small ubiquitin-like modifier (SUMO).

View Article and Find Full Text PDF

MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1.

Oncogene

December 2016

Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

ErbB-2 amplification/overexpression accounts for an aggressive breast cancer (BC) subtype (ErbB-2-positive). Enhanced ErbB-2 expression was also found in gastric cancer (GC) and has been correlated with poor clinical outcome. The ErbB-2-targeted therapies trastuzumab (TZ), a monoclonal antibody, and lapatinib, a tyrosine kinase inhibitor, have proved highly beneficial.

View Article and Find Full Text PDF

The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is part of an extended family of proteins that together control aspects of cell growth and development, and thus a validated target for drug discovery. We explore in this work the suitability of a molecular dynamics-based end-point binding free energy protocol to estimate the relative affinities of a virtual combinatorial library designed around the EGFR model inhibitor 6{1} as a tool to guide chemical synthesis toward the most promising compounds. To investigate the validity of this approach, selected analogs including some with better and worse predicted affinities relative to 6{1} were synthesized, and their biological activity determined.

View Article and Find Full Text PDF

During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion.

View Article and Find Full Text PDF

Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation.

Cell Stem Cell

February 2016

Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231 Bad Nauheim, Germany; Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina. Electronic address:

Skeletal muscle stem cells (MuSCs) are required for regeneration of adult muscle following injury, a response that demands activation of mainly quiescent MuSCs. Despite the need for dynamic regulation of MuSC quiescence, relatively little is known about the determinants of this property. Here, we show that Suv4-20h1, an H4K20 dimethyltransferase, controls MuSC quiescence by promoting formation of facultative heterochromatin (fHC).

View Article and Find Full Text PDF