28 results match your criteria: "CNRS-INSERM-Universite de la Mediterranee-AP de Marseille[Affiliation]"
Int J Dev Biol
September 2005
Laboratoire de Genetique et de Physiologie du Developpement, Institut de Biologie du Developpement de Marseille, CNRS-INSERM-Universite de la Mediterranee-AP de Marseille, Campus de Luminy, Marseille, France.
Segmentation of the vertebrate body axis is initiated early in development with the sequential formation of somites. Somitogenesis is temporally regulated by a molecular oscillator, the segmentation clock, which acts within presomitic mesoderm (PSM) cells to drive periodic expression of the cyclic genes. We have investigated the kinetics of the progression of cycling gene expression along the PSM.
View Article and Find Full Text PDFDev Biol
August 2003
Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Universite de la Méditerranée/AP de Marseille, Parc Scientifique de Luminy, Case 907, F-13288, Marseille Cedex 9, France.
Orthologues of Brachyury, a subfamily of T-box transcription factors, specify distinct cell types in different metazoan phyla, suggesting that the function of these genes has changed through the course of evolution. To investigate this evolutionary process, we have compared the activities of Brachyury orthologues from all major phyla in a single cellular context, the pluripotent Xenopus laevis animal cap. In this assay, an ancestral function is revealed: most orthologues, including the Hydra protein, mimic the action of endogenous Xenopus Brachyury, in that they induce mesoderm but not endoderm.
View Article and Find Full Text PDFDevelopment
January 2003
Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Parc Scientifique de Luminy, Case 907, 13288, Marseille Cedex 9, France.
Ascidians are invertebrate chordates with a larval body plan similar to that of vertebrates. The ascidian larval CNS is divided along the anteroposterior axis into sensory vesicle, neck, visceral ganglion and tail nerve cord. The anterior part of the sensory vesicle comes from the a-line animal blastomeres, whereas the remaining CNS is largely derived from the A-line vegetal blastomeres.
View Article and Find Full Text PDFDevelopment
March 2002
Laboratoire de génétique et de physiologie du développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France.
Vertebrate somitogenesis is associated with a molecular oscillator, the segmentation clock, which is defined by the periodic expression of genes related to the Notch pathway such as hairy1 and hairy2 or lunatic fringe (referred to as the cyclic genes) in the presomitic mesoderm (PSM). Whereas earlier studies describing the periodic expression of these genes have essentially focussed on later stages of somitogenesis, we have analysed the onset of the dynamic expression of these genes during chick gastrulation until formation of the first somite. We observed that the onset of the dynamic expression of the cyclic genes in chick correlated with ingression of the paraxial mesoderm territory from the epiblast into the primitive streak.
View Article and Find Full Text PDFClin Genet
December 2001
Laboratoire de génétique et de physiologie du développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, Marseille, France.
The segmented or metameric aspect is a basic characteristic of many animal species ranging from invertebrates to man. Body segmentation usually corresponds to a repetition, along the anteroposterior (AP) axis, of similar structures consisting of derivatives from the three embryonic germ layers. In humans, segmentation is most obvious at the level of the vertebral column and its associated muscles, and also in the peripheral nervous system (PNS).
View Article and Find Full Text PDFAnnu Rev Cell Dev Biol
January 2002
Laboratoire de génétique et de physiologie du développement, Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, France.
In vertebrates, the paraxial mesoderm corresponds to the bilateral strips of mesodermal tissue flanking the notochord and neural tube and which are delimited laterally by the intermediate mesoderm and the lateral plate. The paraxial mesoderm comprises the head or cephalic mesoderm anteriorly and the somitic region throughout the trunk and the tail of the vertebrates. Soon after gastrulation, the somitic region of vertebrates starts to become segmented into paired blocks of mesoderm, termed somites.
View Article and Find Full Text PDFInfect Immun
November 2001
Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditérranée/AP de Marseille, 13288 Marseille Cedex 9, France.
The capsular polysaccharide of group B Neisseria meningitidis is composed of a linear homopolymer of alpha(2-8) N-acetyl neuraminic acid or polysialic acid (PSA) that is also carried by isoforms of the mammalian neural cell adhesion molecule (NCAM), which is especially expressed on brain cells during development. Here we analyzed the ability of antibodies induced by the candidate vaccine N-propionyl polysaccharide tetanus toxoid conjugate to recognize PSA-NCAM. We hyperimmunized mice to produce a pool of antisera and a series of immunoglobulin G monoclonal antibodies and evaluated their self-reactivity profile by using a battery of tests (immunoprecipitation, immunoblotting, and immunofluorescence detection on live cells and human tissue sections) chosen for their sensitivity and specificity to detect PSA-NCAM in various environments.
View Article and Find Full Text PDFCell
July 2001
Laboratoire de génétique et de physiologie du développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France.
Vertebrate segmentation requires a molecular oscillator, the segmentation clock, acting in presomitic mesoderm (PSM) cells to set the pace at which segmental boundaries are laid down. However, the signals that position each boundary remain unclear. Here, we report that FGF8 which is expressed in the posterior PSM, generates a moving wavefront at which level both segment boundary position and axial identity become determined.
View Article and Find Full Text PDFDev Dyn
August 2001
INSERM U.382, Developmental Biology Institute of Marseille (IBDM), CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Campus de Luminy, Marseille, France.
A gene-trap strategy was set up in embryonic stem (ES) cells with the aim of trapping genes expressed in restricted neuronal lineages. The vector used trap genes irrespective of their activity in undifferentiated totipotent ES cells. Clones were subjected individually to differentiation in a system in which ES cells differentiated into neurons.
View Article and Find Full Text PDFMol Cell Neurosci
April 2001
INSERM U382, Developmental Biology Institute of Marseille (IBDM), CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Campus de Luminy, Case 907, Marseille Cedex 09, 13288, France.
The CNR (cadherin-related neuronal receptors) family of protocadherins is of great interest because of their potential roles as molecular tags in the formation of specific synaptic connections, and as receptors for reelin, during neuronal migration, and cell body positioning. In order to know more about potential functions of CNRs we have mapped their expression during mouse nervous system development and compared their expression with that of reelin and its intracellular effector Dab1 in several tissues. In spinal cord, CNRs and Dab1 are expressed in motoneurons, while reelin is located in adjacent cells.
View Article and Find Full Text PDFMol Cell Neurosci
March 2001
Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditérranée/AP de Marseille, Parc Scientifique de Luminy, Marseille Cedex 9, 13288, France.
In vertebrates, interneurons of the olfactory bulb are continuously generated postnatally and throughout life at the subventricular zone of the forebrain. From there, the neuronal progenitors migrate tangentially in a typical chain-like structure to the olfactory bulb in which they differentiate as interneurons. We have used a mouse/chick xenograft strategy to explore the migration and differentiation potential of the mouse olfactory progenitors in a heterochronic and heterotypic environment.
View Article and Find Full Text PDFCurr Top Dev Biol
May 2001
Laboratoire de Génétique et de Physiologie du Développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la Méditerranée-AP de Marseille, France.
Somites are transient embryonic structures that are formed from the unsegmented presomitic mesoderm (PSM) in a highly regulated process called somitogenesis. Somite, formation can be considered as the result of several sequential processes: generation of a basic metameric pattern, specification of the antero-posterior identity of each somite, and, finally, formation of the somitic border. Evidence for the existence of a molecular clock or oscillator linked to somitogenesis has been provided by the discovery of the rhythmic and dynamic expression in the PSM of c-hairy1 and lunatic fringe, two genes potentially related to the Notch signaling pathway.
View Article and Find Full Text PDFMech Dev
February 2001
Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS-INSERM-Universite de la Mediterranee-AP de Marseille, France.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors.
View Article and Find Full Text PDFCurr Opin Cell Biol
December 2000
Laboratoire de génétique et de physiologie du développement (LGPD). Developmental Biology Institute of Marseille (IBDM). CNRS-INSERM-Université de la méditerranée-AP de Marseille, Campus de Luminy, Marseille, France.
Vertebrate segmentation initiates with the subdivision of the paraxial mesoderm into a regular array of somites. Recent evidence suggests that the segmentation clock - a biochemical oscillator acting in the unsegmented paraxial mesoderm cells in most vertebrates - controls cyclic Notch signalling, resulting in periodic formation of somite boundaries.
View Article and Find Full Text PDFDevelopment
December 2000
Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS-INSERM-Université de la Méditerranée-AP de Marseille, Campus de Luminy case 907, France.
In the vertebrate neural tube, cell cycle exit of neuronal progenitors is accompanied by the expression of transcription factors that define their generic and sub-type specific properties, but how the regulation of cell cycle withdrawal intersects with that of cell fate determination is poorly understood. Here we show by both loss- and gain-of-function experiments that the neuronal-subtype-specific homeodomain transcription factor Phox2b drives progenitor cells to become post-mitotic. In the absence of Phox2b, post-mitotic neuronal precursors are not generated in proper numbers.
View Article and Find Full Text PDFDevelopment
August 2000
Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Luminy Case 907, France.
An essential aspect of a neuron's identity is the pattern of its axonal projections. In C. elegans, axons extend either longitudinally or circumferentially in response to distinct molecular cues, some of which have been identified.
View Article and Find Full Text PDFMol Cell Neurosci
March 2000
Laboratoire de Génétique et Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Luminy Case 907, Marseille Cedex 9, 13288, France.
The closely related homeobox genes Phox2a and Phox2b are expressed in all central and peripheral noradrenergic neurons. Our previous results have shown that Phox2a controls the differentiation of the main noradrenergic center of the brain, the locus coeruleus, but leaves unaffected the other noradrenergic centers. Here, we report that Phox2b has a wider and overlapping role, in that it is required for the differentiation of all noradrenergic centers in the brain, including the locus coeruleus.
View Article and Find Full Text PDFBioessays
January 2000
Laboratoire de Génétique et de Physiologie du Développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, Marseille, France.
Somites are transient structures which represent the most overt segmental feature of the vertebrate embryo. The strict temporal regulation of somitogenesis is of critical developmental importance since many segmental structures adopt a periodicity based on that of the somites. Until recently, the mechanisms underlying the periodicity of somitogenesis were largely unknown.
View Article and Find Full Text PDFSomites are the most obviously segmented features of the vertebrate embryo. Although the way segmentation is achieved in the fly is now well described, little was known about the molecular mechanisms underlying vertebrate somitogenesis. Through the recent identification of genes important for vertebrate somitogenesis and the analysis of their function, several theoretical models accounting for somitogenesis such as the clock and wavefront model, which have been proposed over the past 20 years, are now starting to receive experimental support.
View Article and Find Full Text PDFCurr Opin Genet Dev
October 1999
Laboratoire de Génétique et de Physiologie du Développement (LGPD) CNRS-INSERM-Université de la Méditerranée - AP de Marseille Campus de Luminy, Case 907, 13288, Marseille,France.
The establishment of a segmental pattern within the vertebrate body plan is achieved during embryogenesis by the somitogenesis process. Two molecular systems have been implicated in this phenomenon: a molecular clock linked to vertebrate segmentation and the Notch signalling pathway. Rhythmic expression of the Lunatic Fringe gene in the presomitic mesoderm has now provided a link between these two systems.
View Article and Find Full Text PDFMech Dev
December 1998
INSERM U382, Developmental Biology Institute of Marseille (IBDM), CNRS/INSERM/Université de la Méditerranée/AP de Marseille, France.
We have characterized different neuronal subpopulations derived from in vitro differentiation of embryonic stem (ES) cells using as markers the expression of several homeodomain transcription factors. Following treatment of embryo-like aggregates with retinoic acid (RA), Pax-6, a protein expressed by ventral central nervous system (CNS) progenitors is induced. In contrast, Pax-7 expressed in vivo by dorsal CNS progenitors, and erbB3, a gene expressed by neural crest cells and its derivatives, are almost undetectable.
View Article and Find Full Text PDFCurr Opin Neurobiol
February 1999
Laboratoire de Génétique et Physiologie du Développement Developmental Biology Institute of Marseille CNRS/INSERM Université de la Méditerranée AP de Marseille Campus de Luminy, Marseille Cedex 9 France.
The specification of neurotransmitter phenotype is an important aspect of neuronal fate determination. Recent studies have begun to define essential transcriptional regulators involved in controlling the mode of neurotransmission in vertebrates and invertebrates, and to examine their regulation by cell-extrinsic factors. An emerging concept is that the control of transmitter choice is intimately linked to that of other aspects of the neuronal phenotype.
View Article and Find Full Text PDFTrends Genet
October 1998
Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, France.
Curr Opin Neurobiol
October 1998
Laboratoire de Génétique et de Physiologie du Développement (LGPD), CNRS-INSERM-Université de la Méditerranée-AP de Marseille, France.
Developmental clocks are hypothetical embryonic time-measuring devices--some are run by oscillators, whereas others depend on rate-limiting processes. Their existence has been deduced from recent studies of the timing of the midblastula transition, the opening of the Hox cluster during organogenesis, and oligodendrocyte progenitor differentiation; however, the mechanisms underlying their function remain largely unknown.
View Article and Find Full Text PDFCurr Biol
August 1998
Laboratoire de génétique et de physiologie du développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, France.
The most obvious segments of the vertebrate embryo are the trunk mesodermal somites which give rise to the segmented vertebral column and the skeletal muscles of the body. Mechanistic insights into vertebrate somitogenesis have recently been gained from observations of rhythmic expression of the avian hairy-related gene (c-hairy1) in chick presomitic mesoderm (PSM), suggesting the existence of a molecular clock linked to somite segmentation ([1]; reviewed in [2]). Here, we show that lunatic Fringe (IFng), a vertebrate homolog of the Drosophila Fringe gene, is also expressed rhythmically in PSM.
View Article and Find Full Text PDF