26 results match your criteria: "CNR-Institute of Crystallography[Affiliation]"

Developing sigma-1 receptor (S1R) modulators is considered a valuable therapeutic strategy to counteract neurodegeneration, cancer progression, and viral infections, including COVID-19. In this context, tools capable of accurately predicting S1R affinity are highly desirable. Herein, we present a panel of 25 classifiers trained on a curated dataset of high-quality bioactivity data of small molecules, experimentally tested as potential S1R modulators.

View Article and Find Full Text PDF

Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1.

Mol Cell

July 2024

Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy. Electronic address:

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs.

View Article and Find Full Text PDF

The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16--methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16--methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics.

View Article and Find Full Text PDF

In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf.

View Article and Find Full Text PDF

The development of small molecules that selectively target the cannabinoid receptor subtype 2 (CB2R) is emerging as an intriguing therapeutic strategy to treat neurodegeneration, as well as to contrast the onset and progression of cancer. In this context, in-silico tools able to predict CB2R affinity and selectivity with respect to the subtype 1 (CB1R), whose modulation is responsible for undesired psychotropic effects, are highly desirable. In this work, we developed a series of machine learning classifiers trained on high-quality bioactivity data of small molecules acting on CB2R and/or CB1R extracted from ChEMBL v30.

View Article and Find Full Text PDF

This study introduces a new de novo design algorithm called that combines the capabilities of a deep-learning algorithm for automated drug-like analogue design, called , with a genetic algorithm for generating molecules with desired target-oriented properties. Specifically, was applied to the angiotensin-converting enzyme 2 (ACE2) target, which is implicated in many pathological conditions, including COVID-19. The ability of to de novo design promising candidates for a specific target was assessed using two docking programs, PLANTS and GLIDE.

View Article and Find Full Text PDF

Assembly of the Intraskeletal Coral Organic Matrix during Calcium Carbonate Formation.

Cryst Growth Des

August 2023

Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.

Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention.

View Article and Find Full Text PDF

Novel -(Heterocyclylphenyl)benzensulfonamide Sharing an Unreported Binding Site with T-Cell Factor 4 at the β-Catenin Armadillo Repeats Domain as an Anticancer Agent.

ACS Pharmacol Transl Sci

July 2023

Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.

Despite intensive efforts, no inhibitors of the Wnt/β-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel -(heterocyclylphenyl)benzenesulfonamides as β-catenin inhibitors. Compounds - showed strong inhibition of the luciferase activity.

View Article and Find Full Text PDF

Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.

View Article and Find Full Text PDF

Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon-based nanostructures, known for low toxicity and excellent properties, are being developed as multifunctional treatments for cancer through a chemo-photothermal approach.
  • The study introduces a novel type of photoresponsive carbon-based polymer dots (CPDs-PNM) made from poly(-isopropylacrylamide) using a simple thermal process, showing high photothermal efficiency and good drug loading capabilities.
  • CPDs-PNM were shown to safely deliver the chemotherapy drug AraC and, when activated by green light, enhanced its toxicity against neuroblastoma cells, demonstrating a synergistic effect for cancer treatment.
View Article and Find Full Text PDF

Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer.

Int J Pharm

February 2023

Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy.

Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety.

View Article and Find Full Text PDF

Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach.

View Article and Find Full Text PDF

Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques.

Front Pharmacol

September 2022

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Drug-induced cardiotoxicity is a common side effect of drugs in clinical use or under postmarket surveillance and is commonly due to off-target interactions with the cardiac human-ether-a-go-go-related (hERG) potassium channel. Therefore, prioritizing drug candidates based on their hERG blocking potential is a mandatory step in the early preclinical stage of a drug discovery program. Herein, we trained and properly validated 30 ligand-based classifiers of hERG-related cardiotoxicity based on 7,963 curated compounds extracted by the freely accessible repository ChEMBL (version 25).

View Article and Find Full Text PDF

Luminescent and photothermic carbon polymer dots (CPDs-PNM), composed of a carbonized core and cross-linked chains of poly(-isopropylacrylamide), were synthetized by a novel, simple, solvent- and reagent-free method. The formation of CPDs-PNM was controlled by both temperature and heating time. The CPDs-PNM exhibited LCST behaviour, high photothermal conversion efficiency, curcumin loading capacity and no toxicity to eukaryotic cells.

View Article and Find Full Text PDF

Drug-induced blockade of the human ether-à-go-go-related gene () channel is today considered the main cause of cardiotoxicity in postmarketing surveillance. Hence, several ligand-based approaches were developed in the last years and are currently employed in the early stages of a drug discovery process for cardiac safety assessment of drug candidates. Herein, we present the first structure-based classifiers able to discern binders from nonbinders.

View Article and Find Full Text PDF

The early detection of the human immunodeficiency virus (HIV) is of paramount importance to achieve efficient therapeutic treatment and limit the disease spreading. In this perspective, the assessment of biosensing assay for the HIV-1 p24 capsid protein plays a pivotal role in the timely and selective detection of HIV infections. In this study, multi-parameter-SPR has been used to develop a reliable and label-free detection method for HIV-1 p24 protein.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting people in the elderly. Targeting aggregation of β-amyloid peptides (Aβ) is considered a promising approach for the therapeutic treatment of the disease. Peptide based inhibitors of β-amyloid fibrillation are emerging as safe drug candidates as well as interesting compounds for early diagnosis of AD.

View Article and Find Full Text PDF

In the absence of an approved vaccine, developing effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antivirals is essential to tackle the current pandemic health crisis due to the coronavirus disease 2019 (COVID-19) spread. As any traditional drug discovery program is a time-consuming and costly process requiring more than one decade to be completed, repurposing of existing drugs is the preferred way for rapidly selecting promising clinical candidates. We present a virtual screening campaign to identify covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease (PLpro) showing potential multitarget activities (i.

View Article and Find Full Text PDF

The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression. Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders.

View Article and Find Full Text PDF

Thiolated self-assembled monolayers (SAMs) are typically used to anchor on a gold surface biomolecules serving as recognition elements for biosensor applications. Here, the design and synthesis of -(2-hydroxyethyl)-3-mercaptopropanamide (NMPA) in biotinylated mixed SAMs is proposed as an alternative strategy with respect to on-site multistep functionalization of SAMs prepared from solutions of commercially available thiols. In this study, the mixed SAM deposited from a 10:1 solution of 3-mercaptopropionic acid (3MPA) and 11-mercaptoundecanoic acid (11MUA) is compared to that resulting from a 10:1 solution of NMPA:11MUA.

View Article and Find Full Text PDF

First enantioselective synthesis of gingesulfonic acids and unequivocal determination of their absolute stereochemistry.

Org Biomol Chem

February 2020

Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, The Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland.

Herein we report the first organocatalysed enantioselective synthesis of gingesulfonic acids and shogasulfonic acids via a mild and convenient aminothiourea-catalysed conjugate addition of bisulfite to the olefin moiety of α,β-unsaturated carbonyls-a technology previously reported by us. A series of optically active naturally occurring sulfonic acids are prepared in their natural and unnatural configurations, and their absolute configurations are unequivocally confirmed by single crystal X-ray diffractometry.

View Article and Find Full Text PDF

We have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure.

View Article and Find Full Text PDF

Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency.

Cell Death Dis

July 2014

Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy.

Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency (human-induced pluripotent stem cells), and derived from these neural precursor cells able to terminally differentiate into post-mitotic neurons positive to >90% for β-tubulin III+/microtubule-associated protein 2+. We show that A-T neurons display similar voltage-gated potassium and sodium currents and discharges of action potentials as control neurons, but defective expression of the maturation and synaptic markers SCG10, SYP and PSD95 (postsynaptic density protein 95).

View Article and Find Full Text PDF