18 results match your criteria: "CNR - Institute of Condensed Matter Chemistry and Technologies for Energy[Affiliation]"

A nitric oxide (NO) photodonor (1) capable of releasing two NO molecules through a stepwise mechanism has been covalently grafted to blue-emitting N-doped carbon dots (NCDs). The resulting water-soluble nanoconjugate (NCDs-1), 10 nm in diameter, exhibits a new absorption band not present in the simple physical mixture of the two components and is attributable to strong electronic interactions between them in the ground state. Blue light excitation of NCDs-1 leads to NO photogeneration with an efficiency almost one order of magnitude higher than that observed for 1 alone, probably due to a photoinduced electron transfer between the NCDs and the grafted 1.

View Article and Find Full Text PDF

Intrinsic dynamics of emulsions: Experiments in microgravity on the International Space Station.

J Colloid Interface Sci

January 2025

Department of Mathematics, Physics and Computer Sciences, University of Parma, 43123 Parma, Italy. Electronic address:

Hypothesis: In order to understand the basic mechanisms affecting emulsion stability, the intrinsic dynamics of the drop population must be investigated. We hypothesize that transient ballistic motion can serve as a marker of interactions between drops. In 1G conditions, buoyancy-induced drop motion obscures these interactions.

View Article and Find Full Text PDF

We develop a thermoelectric generator based on catalytic combustion and operating in the low power range (up to 10 W). Considering the target of small-scale thermoelectric generators, the additive technique was chosen as an enabling technology to customize the different parts of the presented device. The generator consists of a hexagonal shaped combustion chamber coupled to commercial thermoelectric modules, water-cooled at the cold side.

View Article and Find Full Text PDF

Au nanostructures exhibiting a localized surface plasmon resonance in the near-infrared spectral window are obtained in a single, green step at room temperature by pomegranate extract in the presence of a highly biocompatible β-cyclodextrin branched polymer, without the need of preformed seeds, external reducing and sacrificial agents, and conventional surfactants. The polymeric component makes the Au nanostructures dispersible in water, stable for weeks and permits their supramolecular assembling with the chemotherapeutic sorafenib and a nitric oxide (NO) photodonor (NOPD), chosen as representative for chemo- and photo-therapeutics. Irradiation of the plasmonic Au nanostructures in the therapeutic window with 808 nm laser light results in a good photothermal response, which (i) is not affected by the presence of either the chemo- or the phototherapeutic guests and (ii) does not lead to their photoinduced decomposition.

View Article and Find Full Text PDF

Vegetable oils are bio-based and sustainable starting materials that can be used to develop chemicals for industrial processes. In this study, the functionalization of three vegetable oils (grape, hemp, and linseed) with maleic anhydride was carried out either by conventional heating or microwave activation to obtain products that, after further reactions, can enhance the water dispersion of oils for industrial applications. To identify the most abundant derivatives formed, trans-3-octene, methyl oleate, and ethyl linoleate were reacted as reference systems.

View Article and Find Full Text PDF

The kinetics of spontaneous emulsification is investigated on aqueous pendant drops in paraffin oil. Optical microscopy in transmission mode is used for high-spatial-resolution image recording. The influence of a lipophilic surfactant (Span 80) and two water-soluble surfactants (CTAB and SDS) is investigated.

View Article and Find Full Text PDF

Experimental data for tridecyl dimethyl phosphine oxide (CDMPO) adsorption layers at the water/air interface, including equilibrium surface tension and surface dilational viscoelasticity, are measured by bubble and drop profile analysis tensiometry at different solution concentrations and surface area oscillation frequencies. The results are used to assess the applicability of a multistate model with more than two possible adsorption states. For the experiments with single drops, the depletion of surfactant molecules due to adsorption at the drop surface is taken into account.

View Article and Find Full Text PDF

Heterogeneous photocatalysis is considered as one of the most appealing options for the treatment of organic pollutants in water. However, its definitive translation into industrial practice is still very limited because of both the complexity of large-scale production of catalysts and the problems involved in handling the powder-based photocatalysts in the industrial plants. Here, we demonstrate that the MOCVD approach can be successfully used to prepare large-scale supported catalysts with a good photocatalytic activity towards dye degradation.

View Article and Find Full Text PDF

A special issue dedicated to Pietro Traldi: Portrait of an eclectic mass spectrometrist.

Mass Spectrom Rev

June 2023

Department of ADMET & Bioanalitycal Sciences, Aptuit (Verona) Srl, an Evotec Company, Company, Verona, Italy.

View Article and Find Full Text PDF

We describe an experiment container with light scattering and imaging diagnostics for experiments on soft matter aboard the International Space Station (ISS). The suite of measurement capabilities can be used to study different materials in exchangeable sample cell units. The currently available sample cell units and future possibilities for foams, granular media, and emulsions are presented in addition to an overview of the design and the diagnostics of the experiment container.

View Article and Find Full Text PDF

Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants.

View Article and Find Full Text PDF

In this review, we highlight and discuss the effects of interfacial properties on the major mechanisms governing the aging of emulsions: flocculation, coalescence and Ostwald ripening. The process of emulsification is also addressed, as it is well recognized that the adsorption properties of emulsifiers play an important role on it. The consolidated background on these phenomena is briefly summarised based on selected literature, reporting relevant findings and results, and discussing some criticalities.

View Article and Find Full Text PDF

Development of high-entropy alloy (HEA) films is a promising and cost-effective way to incorporate these materials of superior properties in harsh environments. In this work, a refractory high-entropy alloy (RHEA) film of equimolar CuMoTaWV was deposited on silicon and 304 stainless-steel substrates using DC-magnetron sputtering. A sputtering target was developed by partial sintering of an equimolar powder mixture of Cu, Mo, Ta, W, and V using spark plasma sintering.

View Article and Find Full Text PDF

The theoretical description of the adsorption of surfactants at interfaces between aqueous solutions and oil was based over a very long time on models derived for the solution/air interface. Thus, most of the experimentally observed peculiarities could not be specifically considered but were merely interpreted in terms of a penetration of oil molecules into the alkyl chain layer of the adsorbed surfactant molecules. These penetrating oil molecules enhance the surfactant adsorption as compared to the water/air interface.

View Article and Find Full Text PDF

The precise detection of flammable and explosive gases and vapors remains an important issue because of the increasing demand for renewable energy sources and safety requirements in industrial processes. Metal oxides (TiO, SnO, ZnO, etc.) are very attractive materials for the manufacturing of chemical gas sensors.

View Article and Find Full Text PDF

Hydrogen evolution reaction through electrolysis holds great potential as a clean, renewable, and sustainable energy source. Platinum-based catalysts are the most efficient to catalyze and convert water into molecular hydrogen; however, their large-scale application is prevented by scarcity and cost of Pt. In this work, we propose a new ternary composite of AgS, MoS, and reduced graphene oxide (RGO) flakes via a one-pot synthesis.

View Article and Find Full Text PDF

In this work we investigate the surface properties and foamability of saponin and mixed saponin-chitosan solutions. These natural compounds are widely used in various cosmetic, pharmaceutical and food technologies because of their efficiency as bio-active components and their biodegradability. These compounds and their mixture were investigated versus the composition by surface tension and dilational rheology measurements and the respective foams analysed at the formation and during their entire time evolution.

View Article and Find Full Text PDF

The control of the behavior of oil in water emulsions requires deeper investigations on the adsorption properties of the emulsion stabilizers at the interfaces, which are fundamental to explain the (de)stabilization mechanisms. In this work, we present an extensive study on oil-in-water emulsions stabilized by sodium dodecyl sulfate (SDS) below its critical micellar concentration. Dynamic tensiometry, dilational rheology, and electrical conductivity measurements are used to investigate the adsorption properties at the droplet interface, whereas the aging of the respective emulsions was investigated by monitoring the macroscopic thickness of the emulsion layer, by microimaging and dynamic light scattering (DLS) analysis, to get information on the drop size distribution.

View Article and Find Full Text PDF