44 results match your criteria: "CNR - Institute of Biomembranes and Bioenergetics[Affiliation]"

Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter.

Sci Rep

February 2018

Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy.

Exosomes are extracellular vesicles involved in cell-to-cell communication. Previous large scale proteomics revealed that they contain SLC proteins. However, no data on the function of exosomal SLCs is available, so far.

View Article and Find Full Text PDF

The nuclear genes of Saccharomyces cerevisiae YHM2, ODC1 and ODC2 encode three transporters that are localized in the inner mitochondrial membrane. In this study, the roles of YHM2, ODC1 and ODC2 in the assimilation of nitrogen and in the biosynthesis of lysine have been investigated. Both the odc1Δodc2Δ double knockout and the yhm2Δ mutant grew similarly as the YPH499 wild-type strain on synthetic minimal medium (SM) containing 2% glucose and ammonia as the main nitrogen source.

View Article and Find Full Text PDF

Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale.

Biol Rev Camb Philos Soc

February 2018

School of Computer Science & Informatics, Cardiff University, Queens Buildings, 5 The Parade, Cardiff, CF24 3AA, U.K.

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance.

View Article and Find Full Text PDF

Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds.

View Article and Find Full Text PDF

Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein.

Mol Cell Biochem

February 2017

Department DiBEST (Biologia, Ecologia, Scienze Della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci cubo 4C, 87036, Arcavacata di Rende, CS, Italy.

The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining.

View Article and Find Full Text PDF

Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster.

Biochim Biophys Acta Bioenerg

February 2017

Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy. Electronic address:

CoA is an essential cofactor that holds a central role in cell metabolism. Although its biosynthetic pathway is conserved across the three domains of life, the subcellular localization of the eukaryotic biosynthetic enzymes and the mechanism behind the cytosolic and mitochondrial CoA pools compartmentalization are still under debate. In humans, the transport of CoA across the inner mitochondrial membrane has been ascribed to two related genes, SLC25A16 and SLC25A42 whereas in D.

View Article and Find Full Text PDF

The mitochondrial carnitine/acylcarnitine carrier is regulated by hydrogen sulfide via interaction with C136 and C155.

Biochim Biophys Acta

January 2016

Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy; CNR Institute of Biomembranes and Bioenergetics, Via Amendola 165/A, 70126 Bari, Italy. Electronic address:

Background: The carnitine/acylcarnitine carrier (CAC or CACT) mediates transport of acylcarnitines into mitochondria for the β-oxidation. CAC possesses Cys residues which respond to redox changes undergoing to SH/disulfide interconversion.

Methods: The effect of H2S has been investigated on the [(3)H]carnitine/carnitine antiport catalyzed by recombinant or native CAC reconstituted in proteoliposomes.

View Article and Find Full Text PDF

Mitochondrial Lon protease (Lon) regulates several mitochondrial functions, and is inhibited by the anticancer molecule triterpenoid 2-cyano-3, 12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), or by its C-28 methyl ester derivative (CDDO-Me). To analyze the mechanism of action of triterpenoids, we investigated intramitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, mitochondrial mass, mitochondrial dynamics and morphology, and Lon proteolytic activity in RKO human colon cancer cells, in HepG2 hepatocarcinoma cells and in MCF7 breast carcinoma cells. We found that CDDO and CDDO-Me are potent stressors for mitochondria in cancer cells, rather than normal non-transformed cells.

View Article and Find Full Text PDF

The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions.

View Article and Find Full Text PDF

Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation.

Biochim Biophys Acta

August 2015

Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy. Electronic address:

The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium.

View Article and Find Full Text PDF

The mitochondrial carnitine/acylcarnitine translocase has been identified, purified and reconstituted in liposomes in 1990. Since that time it has been object of studies aimed to characterize its function and to define the molecular determinants of the translocation pathway. Thanks to these tenacious studies the molecular map of the amino acids involved in the catalysis has been constructed and the roles of critical residues in the translocation pathway have been elucidated.

View Article and Find Full Text PDF

The effect of Hg(2+) and CH3Hg(+) on the mitochondrial carnitine/acylcarnitine transporter (CACT) has been studied on the recombinant protein and on the CACT extracted from HeLa cells or Zebrafish and reconstituted in proteoliposomes. Transport was abolished upon treatment of the recombinant CACT in proteoliposomes by Hg(2+) or CH3Hg(+). Inhibition was reversed by the SH reducing agent 1,4-dithioerythritol, GSH, and N-acetylcysteine.

View Article and Find Full Text PDF

The mitochondrial carnitine/acylcarnitine translocase has been identified, purified and reconstituted in liposomes in 1990. Since that time it has been object of studies aimed to characterize its function and to define the molecular determinants of the translocation pathway. Thanks to these tenacious studies the molecular map of the amino acids involved in the catalysis has been constructed and the roles of critical residues in the translocation pathway have been elucidated.

View Article and Find Full Text PDF

Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3- propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion.

View Article and Find Full Text PDF

Endometrial carcinoma (EC) is a solid neoplasia for which a role for mitochondria in cancer progression is currently emerging and yet represents a diagnostic and prognostic challenge. EC is one of the most frequently occurring gynecological malignancies in the Western world whose incidence has increased significantly during the last decades. Here, we review the literature data on mitochondrial changes reported in EC, namely, mitochondrial DNA (mtDNA) mutations, increase in mitochondrial biogenesis and discuss whether they may be used as new cancer biomarkers for early detection and prognosis of this cancer.

View Article and Find Full Text PDF

The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels.

View Article and Find Full Text PDF

The mitochondrial carnitine/acylcarnitine carrier catalyzes the transport of carnitine and acylcarnitines by antiport as well as by uniport with a rate slower than the rate of antiport. The mechanism of antiport resulting from coupling of two opposed uniport reactions was investigated by site-directed mutagenesis. The transport reaction was followed as [(3)H]carnitine uptake in or efflux from proteoliposomes reconstituted with the wild type or mutants, in the presence or absence of a countersubstrate.

View Article and Find Full Text PDF

Homocysteine, a sulfur-containing amino acid derived from the methionine metabolism, is located at the branch point of two pathways of the methionine cycle, i.e. remethylation and transsulfuration.

View Article and Find Full Text PDF

Transmitochondrial cytoplasmic hybrids (cybrids) are well established model systems to reveal the effects of mitochondrial DNA (mtDNA) mutations on cell metabolism excluding the interferences of a different nuclear background. The m.3571insC mutation in the MTND1 gene of respiratory complex I (CI) is commonly detected in oncocytic tumors, in which it causes a severe CI dysfunction leading to an energetic impairment when present above 83% mutant load.

View Article and Find Full Text PDF

Mutations in the Mitochondrial Citrate Carrier SLC25A1 are Associated with Impaired Neuromuscular Transmission.

J Neuromuscul Dis

January 2014

Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, UK.

Background And Objective: Congenital myasthenic syndromes are rare inherited disorders characterized by fatigable weakness caused by malfunction of the neuromuscular junction. We performed whole exome sequencing to unravel the genetic aetiology in an English sib pair with clinical features suggestive of congenital myasthenia.

Methods: We used homozygosity mapping and whole exome sequencing to identify the candidate gene variants.

View Article and Find Full Text PDF

Molecular mechanism of inhibition of the mitochondrial carnitine/acylcarnitine transporter by omeprazole revealed by proteoliposome assay, mutagenesis and bioinformatics.

PLoS One

October 2014

CNR Institute of Biomembranes and Bioenergetics, Bari, Italy ; Department BEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.

The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s).

View Article and Find Full Text PDF

The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5'-phosphosulfate and 3'-phospho-adenosine 5'-phosphosulfate.

Biochim Biophys Acta

February 2014

Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy. Electronic address:

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria.

View Article and Find Full Text PDF

The carnitine/acylcarnitine transporter is a transport system whose function is essential for the mitochondrial β-oxidation of fatty acids. Here, the presence of carnitine/acylcarnitine carrier (CACT) in nervous tissue and its sub-cellular localization in dorsal root ganglia (DRG) neurons have been investigated. Western blot analysis using a polyclonal anti-CACT antibody produced in our laboratory revealed the presence of CACT in all the nervous tissue extracts analyzed.

View Article and Find Full Text PDF

Background: The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.

View Article and Find Full Text PDF

H(2)O(2) inhibits the [(3)H]carnitine/carnitine antiport catalysed by the mitochondrial carnitine/acylcarnitine transporter reconstituted in proteoliposomes. The inhibition was reversed by dithioerythritol, N-acetylcysteine and L-cysteine. Inhibition time-dependence revealed a faster and a slower reaction stages with orders of reaction of 1.

View Article and Find Full Text PDF