100 results match your criteria: "CNR─Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing[Affiliation]"

Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.

View Article and Find Full Text PDF

Inclusivity is child's play: pilot study on usability, acceptability and user experience of a sensory-motor PC game for children with cerebral palsy (GiocAbile).

Ital J Pediatr

December 2024

Pediatric Physical Medicine & Rehabilitation Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Background: The use of video games in rehabilitation settings is gaining increasing popularity. However, the lack of commercial video games suitable for children with disabilities and the disappointing user experience of serious games limit their applicability. The aim of this study was to assess the usability, acceptability and user experience of GiocAbile, an active video game for children with cerebral palsy (CP).

View Article and Find Full Text PDF

In situ monitoring of small molecule diffusion at solid-solid interfaces is challenging, even with sophisticated equipment. Here, novel chromogenic photonic crystal detectors enabled by integrating bioinspired structural color with stimuli-responsive shape memory polymer (SMP) for detecting trace amounts of small molecule interfacial diffusion are reported. Colorless macroporous SMP membranes with deformed macropores can recover back to the "memorized" photonic crystal microstructures and the corresponding iridescent structural colors when triggered by diffused small molecules.

View Article and Find Full Text PDF

Analyzing the composition of animal hair fibers in textiles is crucial for ensuring the quality of yarns and fabrics made from animal hair. Among others, Fourier transform infrared (FT-IR) spectroscopy is a technique that identifies vibrations associated with chemical bonds, including those found in amino acid groups. Cashmere, mohair, yak, camel, alpaca, vicuña, llama, and sheep hair fibers were analyzed via attenuated total reflection FT-IR (ATR FT-IR) spectroscopy and scanning electron microscopy techniques aiming at the discrimination among them to identify possible commercial frauds.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have developed a new method to create nanosponges from wool keratin using pyromellitic dianhydride as a cross-linker, forming a polymer suitable for various uses.
  • * The resulting keratin-based nanosponge effectively absorbs about 50% of heavy metals in just 24 hours, showing potential as a sustainable solution for wastewater treatment.
View Article and Find Full Text PDF

Carbon Fiber Reinforced Plastic (CFRP) is going to assume more and more importance in mechanical and aerospace engineering in the near future. This is due to its intrinsic high lightness and resistance, if compared to traditional metallic materials. CFRP is characterized by a proper production and repair technology.

View Article and Find Full Text PDF
Article Synopsis
  • There was an error in the original publication that needs to be addressed.
  • The correction is important for ensuring accurate information.
  • Readers should refer to the updated version to get the correct details.
View Article and Find Full Text PDF

Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis.

Front Chem

August 2024

National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy.

Re-designing existing nano-silver technologies to optimize efficacy and sustainability has a tangible impact on preventing infections and limiting the spread of pathogenic microorganisms. Advancements in manufacturing processes could lead to more cost-effective and scalable production methods, making nano-silver-based antimicrobial products more accessible in various applications, such as medical devices, textiles, and water purification systems. In this paper, we present a new, versatile, and eco-friendly one-pot process for preparing silver nanoparticles (AgNPs) at room temperature by using a quaternary ammonium salt of hydroxyethyl cellulose (HEC), a green ingredient, acting as a capping and reducing agent.

View Article and Find Full Text PDF

The use of renewable resources in composite materials is a vital strategy for enhancing sustainability in material science. Wool fibers are promising due to their unique properties, including thermal insulation and self-extinguishing characteristics. However, a substantial portion of wool is deemed unsuitable for textiles and is often discarded as waste.

View Article and Find Full Text PDF

Background: Type-2 Diabetes Mellitus (T2D) is a growing concern worldwide, and family doctors are called to help diabetic patients manage this chronic disease, also with Medical Nutrition Therapy (MNT). However, MNT for Diabetes is usually standardized, while it would be much more effective if tailored to the patient. There is a gap in patient-tailored MNT which, if addressed, could support family doctors in delivering effective recommendations.

View Article and Find Full Text PDF

In this work we explore a potential approach to improve human-robot collaboration experience by adapting cobot behavior based on natural cues from the operator. Inspired by the literature on human-human interactions, we conducted a wizard-of-oz study to examine whether a gaze towards the cobot can serve as a trigger for initiating joint activities in collaborative sessions. In this study, 37 participants engaged in an assembly task while their gaze behavior was analyzed.

View Article and Find Full Text PDF

The textile industry is a pillar of the manufacturing sector worldwide, but it still represents a significantly polluting production sector since it is energy-, water- and natural resource-intensive. Herein, waste wool that did not meet the technical requirements to be used for yarns and fabrics was recovered first to prepare materials for wastewater remediation, specifically for phosphate removal. The wool underwent an alkaline treatment, eventually saturated with FeCl and then left at room temperature or thermally treated to induce crosslinking/stabilisation, obtaining adsorbent panels.

View Article and Find Full Text PDF

The dark side of the wool? From wool wastes to keratin microfilaments through the solution blow spinning process.

Int J Biol Macromol

August 2024

Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy; Kerline srl, Via Piero Gobetti 101, Bologna, 40129, Italy. Electronic address:

The valorization of discarded wool from dairy sheep breeding is a challenging issue. The most proposed strategies lie in the processing of keratin extracted from wool without reducing the molecular weight of the protein chains (the high molecular weight-HMW keratin). Here, the HMW keratin has been spun for the first time by solution blow spinning.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a chronic condition among the main causes of morbidity and mortality worldwide, representing a burden on health care systems. Scientific literature highlights that nutrition is pivotal in respiratory inflammatory processes connected to COPD, including exacerbations. Patients with COPD have an increased risk of developing nutrition-related comorbidities, such as diabetes, cardiovascular diseases, and malnutrition.

View Article and Find Full Text PDF

Flow state, the optimal experience resulting from the equilibrium between perceived challenge and skill level, has been extensively studied in various domains. However, its occurrence in industrial settings has remained relatively unexplored. Notably, the literature predominantly focuses on Flow within mentally demanding tasks, which differ significantly from industrial tasks.

View Article and Find Full Text PDF

The accurate segmentation of individual muscles is essential for quantitative MRI analysis of thigh images. Deep learning methods have achieved state-of-the-art results in segmentation, but they require large numbers of labeled data to perform well. However, labeling individual thigh muscles slice by slice for numerous volumes is a laborious and time-consuming task, which limits the availability of annotated datasets.

View Article and Find Full Text PDF

Introduction: The evaluation of memory is a crucial aspect of both cognitive research and clinical applications, as it offers valuable insights into an individual's cognitive wellbeing and performance. Conventional neuropsychological assessments represent the established method for assessing different aspects of memory. Recent technological advancements, specifically in the field of virtual reality (VR), have introduced novel methods for evaluating memory.

View Article and Find Full Text PDF

Accidents at work may force workers to face abrupt changes in their daily life: one of the most impactful accident cases consists of the worker remaining in a wheelchair. Return To Work (RTW) of wheelchair users in their working age is still challenging, encompassing the expertise of clinical and rehabilitation personnel and social workers to match the workers' residual capabilities with job requirements. This work describes a novel and prototypical knowledge-based Decision Support System (DSS) that matches workers' residual capabilities with job requirements, thus helping vocational therapists and clinical personnel in the RTW decision-making process for WUs.

View Article and Find Full Text PDF

Keratin/Copper Complex Electrospun Nanofibers for Antibacterial Treatments: Property Investigation and In Vitro Response.

Materials (Basel)

May 2024

Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy.

The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical-chemical features were related to the crosslinking effect caused by Cu.

View Article and Find Full Text PDF

Ontology-based decision support systems for diabetes nutrition therapy: A systematic literature review.

Artif Intell Med

May 2024

Department of Biomedical Sciences for Health, University of Milan, I-20133 Milan, Italy. Electronic address:

Diabetes is a non-communicable disease that has reached epidemic proportions, affecting 537 million people globally. Artificial Intelligence can support patients or clinicians in diabetes nutrition therapy - the first medical therapy in most cases of Type 1 and Type 2 diabetes. In particular, ontology-based recommender and decision support systems can deliver a computable representation of experts' knowledge, thus delivering patient-tailored nutritional recommendations or supporting clinical personnel in identifying the most suitable diet.

View Article and Find Full Text PDF

In recent years, the importance of isolating single cells from blood circulation for several applications, such as non-invasive tumour diagnosis, the monitoring of minimal residual disease, and the analysis of circulating fetal cells for prenatal diagnosis, urged the need to set up innovative methods. For such applications, different methods were developed. All show some weaknesses, especially a limited sensitivity, and specificity.

View Article and Find Full Text PDF

Introduction: Drought detection, spanning from early stress to severe conditions, plays a crucial role in maintaining productivity, facilitating recovery, and preventing plant mortality. While handheld thermal cameras have been widely employed to track changes in leaf water content and stomatal conductance, research on thermal image classification remains limited due mainly to low resolution and blurry images produced by handheld cameras.

Methods: In this study, we introduce a computer vision pipeline to enhance the significance of leaf-level thermal images across 27 distinct cotton genotypes cultivated in a greenhouse under progressive drought conditions.

View Article and Find Full Text PDF

This work investigates micro-electro discharge machining (EDM) performance involving deionized and tap water. The chosen machining regime was semi-finishing, where open voltage (from 100 to 130 V) and current values (5-10 A) were applied using a 0.5 µs pulse-on time and a frequency of 150 kHz, i.

View Article and Find Full Text PDF

In this paper, we present a new generation of omnidirectional automated guided vehicles (omniagv) used for transporting materials within a manufacturing factory with the ability to navigate autonomously and intelligently by interacting with the environment, including people and other entities. This robot has to be integrated into the operating environment without significant changes to the current facilities or heavy redefinitions of the logistics processes already running. For this purpose, different vision-based systems and advanced methods in mobile and cognitive robotics are developed and integrated.

View Article and Find Full Text PDF