222 results match your criteria: "C.D.); Institute of Life Sciences[Affiliation]"

Extravillous trophoblasts reverse the decidualization induced increase in matrix production by secreting TGFβ antagonists Emilin-1 and Gremlin-1.

Cells Dev

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, United States of America; Jackson Laboratory, Farmington, CT, United States of America. Electronic address:

The maternal-fetal interface has long been considered as a frontier for an evolutionary arms race due to the close juxtaposition of genetically distinct tissues. In hemochorial species with deep placental invasion, including in humans, maternal stroma prepares its defenses against deep trophoblast invasion by decidualization, a differentiation process characterized by increased stromal cell matrix production, and contractile force generation. Decidualization has evolved from an ancestral wound healing response of fibroblast activation by the endometrial stroma.

View Article and Find Full Text PDF

Butterfly pupal wing tissue with an eyespot organizer.

Cells Dev

January 2025

Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.

Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.

View Article and Find Full Text PDF

The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.

View Article and Find Full Text PDF

Comments on the Hox timer and related issues.

Cells Dev

December 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2024 not only marked the 100th anniversary of the discovery of the organizer by Hilde Pröscholdt-Mangold and Hans Spemann, but also the 40th anniversary of the discovery of the homeobox, a DNA region encoding a DNA binding peptide present in several transcription factors of critical importance for the gastrulating embryo. In particular, this sequence is found in the 39 members of the amniote Hox gene family, a series of genes activated in mid-gastrulation and involved in organizing morphologies along the extending anterior to posterior (AP) body axis. Over the past 30 years, the study of their coordinated regulation in various contexts has progressively revealed their surprising regulatory strategies, based on mechanisms acting in-cis, which can translate a linear distribution of series of genes along the chromatin fiber into the proper sequences of morphologies observed along our various body axes.

View Article and Find Full Text PDF

An autocrine synergistic desmin-SPARC network promotes cardiomyogenesis in cardiac stem cells.

Cells Dev

December 2024

Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria. Electronic address:

The mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout mammalian evolution, we hypothesize that cardiac stem cells may contribute to cardiomyogenesis in an unorthodox manner. Since the intermediate filament protein desmin and the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) promote cardiomyogenic differentiation during embryogenesis in a cell-autonomous and paracrine manner, respectively, we focus on their genes and employ mouse embryonic and cardiac stem cell lines as in vitro models to ask whether desmin and SPARC cooperatively influence cardiomyogenesis in cardiac stem and progenitor cells.

View Article and Find Full Text PDF

Transitions between cooperative and crowding-dominated collective motion in non-jammed MDCK monolayers.

Cells Dev

December 2024

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32605, United States of America; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32605, United States of America. Electronic address:

Transitions between solid-like and fluid-like states in living tissues have been found in steps of embryonic development and in stages of disease progression. Our current understanding of these transitions has been guided by experimental and theoretical investigations focused on how motion becomes arrested with increased mechanical coupling between cells, typically as a function of packing density or cell cohesiveness. However, cells actively respond to externally applied forces by contracting after a time delay, so it is possible that at some packing densities or levels of cell cohesiveness, mechanical coupling stimulates cell motion instead of suppressing it.

View Article and Find Full Text PDF

The evolutionary origin and mechanism of chordate tail regeneration. An ancient tale?

Cells Dev

December 2024

MDI Biological laboratory (MDIBL), Bar Harbor, ME 04609, USA; Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany. Electronic address:

Chordate tail regeneration represents the remarkable ability of some chordates to partially or completely regenerate a significant portion of their primary body axis. In this review we will discuss the chordate regenerative ability, what is known about the cellular sources which contribute to the regenerating tail, how various structures such as the spinal cord and vertebral column are re-established, and how scaling of the regenerating tail is regulated. Finally, we propose that tail regeneration is evolutionarily conserved and is fundamentally different from tail development however the origin and mechanism of this process remain elusive.

View Article and Find Full Text PDF

Homeotic transformation of tail to hindlimbs in anuran tadpoles is a manifestation of the reprogramming of positional information in the event of tail regeneration. Such discovery of homeosis is of particular interest considering its occurrence in a vertebrate under the influence of a morphogen which represents a self-organizing system in the context of developmental and regenerative studies. This article reviews homeotic transformation of tail to hindlimbs including pelvic girdles induced by retinoic acid (RA) /vitamin A palmitate during tail regeneration under the scope of self-organization and the role of blastema as an organizer.

View Article and Find Full Text PDF

Tissue mechanics modulate morphogen signalling to induce the head organiser.

Cells Dev

December 2024

Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile. Electronic address:

Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning.

View Article and Find Full Text PDF

LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS.

Cells Dev

December 2024

Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China. Electronic address:

Background & Objectives: LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized.

Results: Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells in vitro and xenograft transplantation in vivo.

View Article and Find Full Text PDF

Blastoid: The future of human development in the laboratory.

Cells Dev

December 2024

Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea. Electronic address:

Research on early human development is crucial for understanding the origins of life and mechanisms underlying disease onset. However, these studies have significant challenges owing to ethical restrictions and technical limitations. Stem cell technology advancement has led to the development of blastoids to overcome these challenges.

View Article and Find Full Text PDF

Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis.

Cells Dev

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, NY, USA.

Aberrations in the Wnt signaling pathway, particularly mutations in genes like APC and β-catenin, are pivotal in initiating and driving the progression of colorectal cancer (CRC), establishing this pathway as a crucial target for therapeutic intervention. Membrane trafficking plays a key role in regulating Wnt signaling by controlling the activation, modulation, and secretion of essential signaling molecules that contribute to CRC progression. This review explores the connection between membrane trafficking and Wnt signaling, with a specific focus on macropinocytosis-an endocytic process involved in nutrient uptake that also plays a role in Wnt signal regulation.

View Article and Find Full Text PDF

The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord.

Cells Dev

December 2024

Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.

The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS.

View Article and Find Full Text PDF

Dissecting the mystery of embryonic scaling: The Scalers Hypothesis and its confirmation in sea urchin embryos.

Cells Dev

October 2024

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str., 117997 Moscow, Russia. Electronic address:

Article Synopsis
  • Embryonic scaling is a unique biological phenomenon where embryos adjust their spatial structure according to their size, initially described in sea urchins.
  • Recent research has aimed to understand the role of specific genes, termed "scalers," which are crucial in regulating morphogen concentration gradients in correlation with embryo size.
  • The findings confirm that scalers, including the gene Mmp3, exist in various reaction-diffusion system models and play a vital role in maintaining gradient scaling across different embryonic types.
View Article and Find Full Text PDF

Transcriptional regulation of postnatal aortic development.

Cells Dev

December 2024

Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA. Electronic address:

The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter.

View Article and Find Full Text PDF

The placenta is an organ that plays a vital role in successful pregnancies, and the failure of early placentation is a significant factor leading to abortion in ruminant species. However, the mechanisms involved in the development and differentiation of bovine placenta remain elusive due to the lack of suitable in vitro placental models. This study aimed to develop an effective method for generating the bovine functional trophoblast organoids by assembling bovine primary trophoblast cells (PBTCs) from the placenta or immortalized bovine placental trophoblast (BTCs) in a 3D culture system in vitro.

View Article and Find Full Text PDF

Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish.

Cells Dev

December 2024

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan. Electronic address:

Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution.

View Article and Find Full Text PDF

Of criminals and cancer: The importance of social bonds and innate morality on cellular societies.

Cells Dev

December 2024

School of Biological Sciences, University of Utah, Salt Lake City, UT, United States; Department of Mathematics, University of Utah, Salt Lake City, UT, United States; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States.

The current dogma in cancer biology contends that cancer is an identity problem: mutations in a cell's DNA cause it to "go rogue" and proliferate out of control. However, this largely ignores the role of cell-cell interaction and fails to explain phenomena such as cancer reversion, the existence of cancers without mutations, and foreign-body carcinogenesis. In this proof-of-concept paper, we draw on criminology to propose that cancer may alternatively be conceptualized as a relational problem: Although a cell's genetics is essential, the influence of its interaction with other cells is equally important in determining its phenotype.

View Article and Find Full Text PDF

'Three signals - three body axes' as patterning principle in bilaterians.

Cells Dev

August 2024

Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.

In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g.

View Article and Find Full Text PDF

Podoplanin and its multifaceted roles in mammalian developmental program.

Cells Dev

December 2024

Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address:

Podoplanin is a vital molecule which plays an integral part in the regulation of development, immunity, and cancer. Expression of Podoplanin is detected at different early developmental stages of mammalian embryo, and it functions to modulate morphogenesis of various organ systems. In experimental animal models of different genetic backgrounds, absence of Podoplanin results in either embryonic lethality or immediate death upon birth, suggesting the importance of the gene in early developmental processes.

View Article and Find Full Text PDF

Specialized structure and function of the apical extracellular matrix at sense organs.

Cells Dev

September 2024

Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks).

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics.

View Article and Find Full Text PDF

Self-organization underlies developmental robustness in plants.

Cells Dev

July 2024

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA. Electronic address:

Article Synopsis
  • Development is a complex, self-organizing process that relies on the diverse interactions of cells, which vary significantly in their gene expression, growth, and division rates.
  • Recent studies show how developmental robustness—its ability to maintain function despite variability—is achieved through various mechanisms that help counteract this cellular noise.
  • The review emphasizes the importance of understanding both the sources of heterogeneity and the ways in which it can be buffered or even leveraged during development, while also suggesting avenues for future research in this area.
View Article and Find Full Text PDF

Epigenetic signatures of trophoblast lineage and their biological functions.

Cells Dev

September 2024

Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China. Electronic address:

Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development.

View Article and Find Full Text PDF