14 results match your criteria: "Brown University Alpert Medical School and Rhode Island Hospital[Affiliation]"

Lag-1 sparing is a common exception to the attentional blink, where a target presented directly after T1 can be identified and reported accurately. Prior work has proposed potential mechanisms for lag 1 sparing, including the boost and bounce model and the attentional gating model. Here, we apply a rapid serial visual presentation task to investigate the temporal limitations of lag 1 sparing by testing three distinct hypotheses.

View Article and Find Full Text PDF

Does undercut macrostructure cage cause increase of subsidence incidence and decrease of disc height?

Spine J

February 2021

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

View Article and Find Full Text PDF

The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase.

View Article and Find Full Text PDF

Objective: The content of websites for fellowship programs is an important source of information for residents applying to breast imaging fellowship programs (BIFPs). The purpose of this study is to evaluate the comprehensiveness of online content of BIFPs.

Methods: A list of BIFPs was obtained from the Society of Breast Imaging website.

View Article and Find Full Text PDF

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles.

View Article and Find Full Text PDF

Background: Patient-reported outcome (PRO) measures often address quality of life (QOL) and help improve communication and shared decision-making. The home parenteral nutrition patient-reported outcome questionnaire (HPN-PROQ) was developed for patients to self-assess factors that influence QOL. The aim of this study was to establish construct validity.

View Article and Find Full Text PDF

Active cell proliferation and turnover in the growth plate is essential for embryonic and postnatal bone growth. We performed a lineage tracing of Wnt/β-catenin signaling responsive cells (Wnt-responsive cells) using Axin2 ;Rosa26ZsGreen mice and found a novel cell population that resides in the outermost layer of the growth plate facing the Ranvier's groove (RG; the perichondrium adjacent to growth plate). These Wnt-responsive cells rapidly expanded and contributed to formation of the outer growth plate from the neonatal to the growing stage but stopped expanding at the young adult stage when bone longitudinal growth ceases.

View Article and Find Full Text PDF

SHP2 is a ubiquitously expressed protein tyrosine phosphatase, which is involved in many signaling pathways to regulate the skeletal development. In endochondral ossification, SHP2 is known to modify the osteogenic fate of osteochondroprogenitors and to impair the osteoblastic transdifferentiation of hypertrophic chondrocytes. However, how SHP2 regulates osteoblast differentiation in intramembranous ossification remains incompletely understood.

View Article and Find Full Text PDF

Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by ) affects skeletal lineage commitment by conditionally deleting in mouse limb and head mesenchyme using "Cre-loxP"-mediated gene excision.

View Article and Find Full Text PDF

Clock Gene Bmal1 Modulates Human Cartilage Gene Expression by Crosstalk With Sirt1.

Endocrinology

August 2016

Center for Translational Medicine (W.Y., X.K., X.J., Z.Q., T.X., N.Q., D.F., W.P., Q.C., S.W.), the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China; Key Laboratory of Environment and Genes Related to Diseases (J.L., H.L., Z.M., H.S.), Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China; Hong Hui Hospital (D.F., W.P.), Xi'an Jiaotong University School of Medicine, and Frontier Institute of Science and Technology (Q.C.), Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China; Department of Pharmacy (N.Q.), Luoyang Orthopedic Hospital, Luoyang, 450052 Henan, China; and Department of Orthopaedics (Q.C.), Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island 02903.

The critical regulation of the peripheral circadian gene implicated in osteoarthritis (OA) has been recently recognized; however, the causative role and clinical potential of the peripheral circadian rhythm attributable to such effects remain elusive. The purpose of this study was to elucidate the role of a circadian gene Bmal1 in human cartilage and pathophysiology of osteoarthritis. In our present study, the mRNA and protein levels of circadian rhythm genes, including nicotinamide adenine dinucleotide oxidase (NAD(+)) and sirtuin 1 (Sirt1), in human knee articular cartilage were determined.

View Article and Find Full Text PDF

Background: Cranioplasty encompasses various cranial reconstruction techniques that are used following craniectomy due to stroke or trauma. Despite classical infectious signs, symptoms, and radiologic findings, however, the diagnosis of infection following cranioplasty can be elusive, with the potential to result in definitive treatment delay. We sought to determine if fever or leukocytosis at presentation were indicative of infection, as well as to identify any factors that may limit its applicability.

View Article and Find Full Text PDF

SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion.

FASEB J

May 2015

*Stem Cell Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island, USA; Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, USA; Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA; U.S. Department of Agriculture Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA; Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA; and Division of Rheumatology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island, USA

Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology-2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M-CSF and receptor activator of nuclear factor-κB ligand (RANKL)-evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue-specific gene knockout approach, we inactivated Shp2 expression in murine OCs.

View Article and Find Full Text PDF

The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities.

View Article and Find Full Text PDF

Recently, loss-of-function mutations in PTPN11 were linked to the cartilage tumor syndrome metachondromatosis (MC), a rare inherited disorder featuring osteochondromas, endochondromas and skeletal deformation. However, the underlying molecular and cellular mechanism for MC remained incompletely understood. By studying the role of the Src homology-2 domain-containing protein tyrosine phosphatase Shp2 (encoded by mouse Ptpn11) in cathepsin K-expressing cells, we identified a novel cell population in the perichondrial groove of Ranvier.

View Article and Find Full Text PDF