208 results match your criteria: "Brander Cancer Research Institute[Affiliation]"

B-cell chronic lymphocytic leukemia (CLL) results from accumulation of leukemic cells that are subject to iterative re-activation cycles and clonal expansion in lymphoid tissues. The effects of the well-tolerated alkaloid Berberine (BRB), used for treating metabolic disorders, were studied on ex-vivo leukemic cells activated in vitro by microenvironment stimuli. BRB decreased expression of survival/proliferation-associated molecules (e.

View Article and Find Full Text PDF

Declining BRCA-Mediated DNA Repair in Sperm Aging and its Prevention by Sphingosine-1-Phosphate.

Reprod Sci

March 2020

Department of Obstetrics and Gynecology, Laboratory of Molecular Reproduction and Fertility Preservation, Yale University School of Medicine, 310 Cedar Street, FMB Room # 224, New Haven, CT, 06510, USA.

Recent data suggest that paternal age can have major impact on reproductive outcomes, and with increased age, there is increased likelihood of chromosomal abnormalities in the sperm. Here, we studied DNA damage and repair as a function of male aging and assessed whether sphingosine-1-phosphate (S1P), a ceramide-induced death inhibitor, can prevent sperm aging by enhancing DNA double-strand breaks (DSB) repair. We observed a significant increase in DNA damage with age and this increase was associated with a decline in the expression of key DNA DSB repair genes in mouse sperm.

View Article and Find Full Text PDF

The susceptibility of DNA in situ to denaturation is modulated by its interactions with histone and nonhistone proteins, as well as with other chromatin components related to the maintenance of the 3D nuclear structure. Measurement of DNA proclivity to denature by cytometry provides insight into chromatin structure and thus can be used to recognize cells in different phases of the cell cycle, including mitosis, quiescence (G ), and apoptosis, as well as to identify the effects of drugs that modify chromatin structure. Particularly useful is the method's ability to detect chromatin changes in sperm cells related to DNA fragmentation and infertility.

View Article and Find Full Text PDF

Detection of Histone H2AX Phosphorylation on Ser-139 as an Indicator of DNA Damage.

Curr Protoc Cytom

June 2019

Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York.

This unit describes immunocytochemical detection of histone H2AX phosphorylated on Ser-139 (γH2AX) to reveal DNA damage, particularly when the damage involves the presence of DNA double-strand breaks (DSBs). These breaks often result from DNA damage induced by ionizing radiation or by treatment with anticancer drugs such as DNA topoisomerase inhibitors. Furthermore, DSBs are generated in the course of DNA fragmentation during apoptosis.

View Article and Find Full Text PDF

Described is the new cytometric approach do detect either stimulation or a collapse of lysosomal proton pump (lysosomes rupture) combined with activation of transglutaminase 2 (TG2) during induction of apoptosis. Apoptosis of human lymphoblastoid TK6 cells was induced by combination of 2-deoxyglucose with the isoquinoline alkaloid berberine, by DNA topoisomerase I inhibitor camptothecin, its analog topotecan, topoisomerase II inhibitors etoposide or mitoxantrone, as well as by the cytotoxic anticancer ribonuclease ranpirnase (onconase). Activity of the proton pump of lysosomes was assessed by measuring entrapment and accumulation of the basic fluorochrome acridine orange (AO) resulting in its metachromatic red luminescence (F ) within these organelles.

View Article and Find Full Text PDF

Nuclear cytometry and chromatin organization.

Cytometry A

August 2018

Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.

The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has been a mainstay of cytometry-from the colorimetric Feulgen stain to smart fluorescent agents with tuned functionality. The level of nuclear structure and function at which the probe aims to readout, or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities and analytical methods. These methods are invariably limited in terms of the resolution attainable versus the volume occupied by targeted chromatin structures.

View Article and Find Full Text PDF

Programmed cell death ligand 1 (PD‑L1) expressed in cancer cells interacting with its receptor programmed cell death 1 (PD‑1) expressed in immune cells represents a regulatory axis linked to the suppression and evasion of host immune functions. The blockade of PD‑1/PD‑L1 interaction using monoclonal antibodies has emerged as an effective therapy for several solid tumors; however, durable response has been observed in a subset of patients with PD‑L1-positive tumors. Thus, the understanding of the mechanisms responsible for the expression of PD‑L1 in tumor cells may help to improve the response to PD‑L1 blockade therapies.

View Article and Find Full Text PDF

Analysis of Cellular DNA Content by Flow Cytometry.

Curr Protoc Immunol

November 2017

Department of Pathology and Brander Cancer Research Institute, New York Medical College, Valhalla, New York.

Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described.

View Article and Find Full Text PDF

Analysis of Cellular DNA Content by Flow Cytometry.

Curr Protoc Cytom

October 2017

Department of Pathology and Brander Cancer Research Institute, New York Medical College, Valhalla, New York.

Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described.

View Article and Find Full Text PDF

Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently linked Gene 33 to the DNA damage response (DDR) induced by hexavalent chromium (Cr(VI)), but the molecular mechanism remains unknown. Here we show that ectopic expression of Gene 33 triggers DDR in an ATM serine/threonine kinase (ATM)-dependent fashion and through pathways dependent or not dependent on ABL proto-oncogene 1 non-receptor tyrosine kinase (c-Abl).

View Article and Find Full Text PDF

Rapid Detection of DNA Strand Breaks in Apoptotic Cells by Flow- and Image-Cytometry.

Methods Mol Biol

May 2018

Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, NY, 10595, USA.

Extensive DNA fragmentation that generates a multitude of DNA double-stand breaks (DSBs) is a hallmark of apoptosis. We developed several variants of the widely used TUNEL methodology that is based on the use of exogenous terminal deoxynucleotidyl transferase (TdT) to label 3'OH ends in DSBs with fluorochromes. Flow- or image-cytometry is then employed to detect and quantify apoptotic cells labeled this way.

View Article and Find Full Text PDF

Activation of caspases is a characteristic event of apoptosis. Various cytometric methods distinguishing this event have been developed to serve as specific apoptotic markers for the assessment of apoptotic frequency within different cell populations. The method described in this chapter utilizes fluorochrome labeled inhibitors of caspases (FLICA) and is applicable to fluorescence microscopy, flow- and imaging-cytometry as well as to confocal imaging.

View Article and Find Full Text PDF

ATM Activation and H2AX Phosphorylation Induced by Genotoxic Agents Assessed by Flow- and Laser Scanning Cytometry.

Methods Mol Biol

February 2018

Department of Pathology, Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, NY, 10595, USA.

Activation of Ataxia Telangiectasia Mediated protein kinase (ATM) by its phosphorylation on serine 1981 and phosphorylation of histone H2AX on serine 139 (γH2AX) are the key events reporting DNA damage, primarily formation of DNA double strand breaks. These events are detected immunocytochemically in individual cells using phospho-specific Abs. The protocols are presented that describe the methodology of immunofluorescent labeling of cells in conjunction with specific staining of cellular DNA.

View Article and Find Full Text PDF

Of Cytometry, Stem Cells and Fountain of Youth.

Stem Cell Rev Rep

August 2017

Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.

Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection.

View Article and Find Full Text PDF

The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential.

View Article and Find Full Text PDF

Cell synchronization is often achieved by transient inhibition of DNA replication. When cultured in the presence of such inhibitors as hydroxyurea, aphidicolin or excess of thymidine the cells that become arrested at the entrance to S-phase upon release from the block initiate progression through S then G and M. However, exposure to these inhibitors at concentrations commonly used to synchronize cells leads to activation of ATR and ATM protein kinases as well as phosphorylation of Ser139 of histone H2AX.

View Article and Find Full Text PDF

Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities.

View Article and Find Full Text PDF

Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an unequivocal marker of DNA double-strand breaks.

View Article and Find Full Text PDF

Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor.

View Article and Find Full Text PDF

Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis.

View Article and Find Full Text PDF

During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided.

View Article and Find Full Text PDF

Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth.

View Article and Find Full Text PDF

We recently reported that the p12 subunit of human DNA polymerase δ (Pol δ4) is degraded by CRL4(Cdt2) which regulates the licensing factor Cdt1 and p21(WAF1) during the G1 to S transition. Presently, we performed multiparameter laser scanning cytometric analyses of changes in levels of p12, Cdt1 and p21(WAF1), detected immunocytochemically in individual cells, vis-à-vis the initiation and completion of DNA replication. The latter was assessed by pulse-labeling A549 cells with the DNA precursor ethynyl-2'-deoxyribose (EdU).

View Article and Find Full Text PDF

Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

Curr Protoc Cytom

July 2014

Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York.

Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels).

View Article and Find Full Text PDF