1,973 results match your criteria: "Brain Imaging Centre[Affiliation]"

Introduction: Lewy body dementia (LBD) shares genetic risk factors with Alzheimer's disease (AD), including apolipoprotein E (APOE), but is distinguishable at the genome-wide level. Polygenic risk scores (PRS) may therefore improve diagnostic classification.

Methods: We assessed diagnostic classification using AD-PRS excluding APOE (AD-PRS ), APOE risk score (APOE-RS), and plasma phosphorylated tau 181 (p-tau181), in 83 participants with LBD, 27 with positron emission tomography amyloid beta (Aβ)positive mild cognitive impairment or AD (MCI+/AD), and 57 controls.

View Article and Find Full Text PDF

Depressive Symptoms and Amyloid Pathology.

JAMA Psychiatry

January 2025

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.

View Article and Find Full Text PDF

PET Imaging of a Transgenic Tau Rat Model SHR24 with [F]AV1451.

Mol Imaging Biol

January 2025

Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.

Purpose: Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders.

View Article and Find Full Text PDF

Connectional differences between humans and macaques in the MT+ complex.

iScience

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

MT+ is pivotal in the dorsal visual stream, encoding tool-use characteristics such as motion speed and direction. Despite its conservation between humans and monkeys, differences in MT+ spatial location and organization may lead to divergent, yet unexplored, connectivity patterns and functional characteristics. Using diffusion tensor imaging, we examined the structural connectivity of MT+ subregions in macaques and humans.

View Article and Find Full Text PDF

Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.

View Article and Find Full Text PDF

Background: The long-chain omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects in depression, and these effects may be mediated via changes in functional brain connectivity. However, little is known about these effects in those with subthreshold depression.

Methods: 15 Participants aged 18-29 years with Patient Health Questionnaire-8 (PHQ-8) scores ≥ 4 and Generalised Anxiety Disorder Assessment-7 (GAD-7) scores ≥ 5, underwent resting-state functional magnetic resonance imaging.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.

View Article and Find Full Text PDF

Neuroanatomical sex differences estimated in neuroimaging studies are confounded by total intracranial volume (TIV) as a major biological factor. Employing a matching approach widely used for causal modeling, we disentangled the effect of TIV from sex to study sex-differentiated brain aging trajectories, their relation to functional networks and cytoarchitectonic classes, brain allometry, and cognition. Using data from the UK Biobank, we created subsamples that removed, maintained, or exaggerated the TIV differences in the original sample.

View Article and Find Full Text PDF

The brain selectively allocates energy to functional brain networks under cognitive control.

Sci Rep

December 2024

Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.

Network energy has been conceptualized based on structural balance theory in the physics of complex networks. We utilized this framework to assess the energy of functional brain networks under cognitive control and to understand how energy is allocated across canonical functional networks during various cognitive control tasks. We extracted network energy from functional connectivity patterns of subjects who underwent fMRI scans during cognitive tasks involving working memory, inhibitory control, and cognitive flexibility, in addition to task-free scans.

View Article and Find Full Text PDF

Associations between genetic variations in oxytocin pathway genes and hippocampal volume: Insights from the UK Biobank.

Cortex

December 2024

Department of Psychology, Stockholm University, Stockholm, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden. Electronic address:

The role of oxytocin-related genes in social-cognitive function has been previously established, but structural brain mechanisms underlying this link remain poorly understood. Utilizing a substantial dataset from the UK Biobank (N ≈ 30,000), this research determined associations between variations in ten single nucleotide polymorphisms (SNPs) within three oxytocin pathway genes (i.e.

View Article and Find Full Text PDF

The study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences.

View Article and Find Full Text PDF

Age-related atrophy of the human hippocampus and the enthorinal cortex starts accelerating at around age 60. Due to the contributions of these regions to many cognitive functions seamlessly used in everyday life, this can heavily impact the lives of elderly people. The hippocampus is not a unitary structure, and mechanisms of its age-related decline appear to differentially affect its subfields.

View Article and Find Full Text PDF

Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.

View Article and Find Full Text PDF

Objective: This study investigates the association between phenotypic age acceleration (PAA) and all-cause and cause-specific mortality in obese individuals.

Methods: Data were drawn from the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2018, including 9,925 obese adults (BMI ≥ 30 kg/m). PAA, defined as phenotypic age exceeding chronological age, was assessed using clinical biomarkers.

View Article and Find Full Text PDF

Comparison of Plasma p-tau217 and [F]FDG-PET for Identifying Alzheimer Disease in People With Early-Onset or Atypical Dementia.

Neurology

January 2025

Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Background And Objectives: To compare the diagnostic performance of an immunoassay for plasma concentrations of phosphorylated tau (p-tau) 217 with visual assessments of fluorine-18 fluorodeoxyglucose [F]FDG-PET in individuals who meet appropriate use criteria for Alzheimer dementia (AD) biomarker assessments.

Methods: We performed a retrospective analysis of individuals with early-onset (age <65 years at onset) and/or atypical dementia (features other than memory at onset), who were evaluated at a tertiary care memory clinic. All participants underwent measurements of CSF biomarkers (Aβ42, p-tau181, and total tau levels), as well as [F]FDG-PET scans, amyloid-PET scans, and plasma p-tau217 quantifications.

View Article and Find Full Text PDF

Biological brain age and resilience in cognitively unimpaired 70-year-old individuals.

Alzheimers Dement

December 2024

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.

Introduction: This study investigated the associations of brain age gap (BAG)-a biological marker of brain resilience-with life exposures, neuroimaging measures, biological processes, and cognitive function.

Methods: We derived BAG by subtracting predicted brain age from chronological age in 739 septuagenarians without dementia or neurological disorders. Robust linear regression models assessed BAG associations with life exposures, plasma inflammatory and metabolic biomarkers, magnetic resonance imaging, and cerebrospinal fluid biomarkers of neurodegeneration and vascular brain injury, and cognitive performance.

View Article and Find Full Text PDF

A Machine Learning Model to Harmonize Volumetric Brain MRI Data for Quantitative Neuroradiologic Assessment of Alzheimer Disease.

Radiol Artif Intell

January 2025

From the Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy (D.A., A.R.); Alzheimer Centre Amsterdam, Neurology, Vrije Universiteit, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (V.V., W.M.v.d.F., B.M.T.); Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands (V.V., W.M.v.d.F., B.M.T.); Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary (B.W., T.A., Z.V.); Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary (B.W.); The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Australia (P.B.); School of Psychology, University of Surrey, Guildford, United Kingdom (T.A.); Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France (S.D.); Department of Epidemiology and Data Science, Vrije Universiteit, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (W.M.v.d.F.); Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands (F.B.); Queen Square Institute of Neurology, University College London, United Kingdom (F.B.); and UCL Hawkes Institute, Department of Medical Physics and Biomedical Engineering and Department of Computer Science, University College London, London, United Kingdom (F.B., D.C.A., A.A., N.P.O.).

Purpose To extend a previously developed machine learning algorithm for harmonizing brain volumetric data of individuals undergoing neuroradiologic assessment of Alzheimer disease not encountered during model training. Materials and Methods Neuroharmony is a recently developed method that uses image quality metrics as predictors to remove scanner-related effects in brain-volumetric data using random forest regression. To account for the interactions between Alzheimer disease pathology and image quality metrics during harmonization, the authors developed a multiclass extension of Neuroharmony for individuals with and without cognitive impairment.

View Article and Find Full Text PDF

Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression.

View Article and Find Full Text PDF

High throughput in-line content uniformity measurement of tablets based on real-time UV imaging.

Int J Pharm

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., H-1111 Budapest, Hungary.

This paper presents a precursor of a novel, high-throughput, in-line system, which utilizes ultraviolet (UV) imaging in order to predict the active pharmaceutical ingredient (API) content of tablets in real-time, non-destructive manner. Pimobendan, cardiovascular drug used in veterinary medicine was chosen as a fluorescent model API. Two experiments were carried out using different measurement setups, where the tablets were moving at different speeds.

View Article and Find Full Text PDF

The Canadian Consortium on Neurodegeneration in Aging (CCNA) was created by the Canadian federal government through its health research funding agency, the Canadian Institutes for Health Research (CIHR), in 2014, as a response to the G7 initiative to fight dementia. Two five-year funding cycles (2014-2019; 2019-2024) have occurred following peer review, and a third cycle (Phase 3) has just begun. A unique construct was mandated, consisting of 20 national teams in Phase I and 19 teams in Phase II (with research topics spanning from basic to clinical science to health resource systems) along with cross-cutting programs to support them.

View Article and Find Full Text PDF

Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology () factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures.

View Article and Find Full Text PDF

Detecting and Tracking β-Amyloid Oligomeric Forms and Dynamics In Vitro by a High-Sensitivity Fluorescent-Based Assay.

ACS Chem Neurosci

December 2024

Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K.

Aggregation of β-amyloid protein is a hallmark pathology of the neurodegenerative disorder Alzheimer's disease and proceeds from monomers to insoluble misfolded fibril forms via soluble and highly toxic oligomeric intermediates. Given the dual feature of being the most toxic form of the Aβ aggregate proteome and an early marker of pathogenesis, there is a need for sensitive methods that can be used to detect Aβ oligomers and investigate the dynamics of aggregation. Herein, we describe a method based on the application of an oligomer-sensitive fluorescent chemical probe pTP-TFE combined with the use of a QIAD (Quantitative determination of Interference with Aβ Aggregate Size Distribution) assay to correctly identify Aβ oligomers in high sensitivity.

View Article and Find Full Text PDF