11 results match your criteria: "Boston University and the NHLBI's Framingham Heart Study[Affiliation]"
Mol Psychiatry
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.
medRxiv
August 2023
University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France.
Importance: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear.
Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist.
Proc Natl Acad Sci U S A
August 2022
Alberta Children's Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada.
SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors and , but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for , functional in human cells and zebrafish.
View Article and Find Full Text PDFCirculating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10. We additionally detected 14 novel loci at P < 5 × 10, specific to either Europeans or African Americans.
View Article and Find Full Text PDFNat Genet
April 2022
Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.
View Article and Find Full Text PDFStroke
March 2022
Department of Epidemiology (A.P.R.), University of Washington, Seattle.
Nat Commun
December 2020
University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France.
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.
View Article and Find Full Text PDFCirc Genom Precis Med
February 2019
Department of General & Interventional Cardiology, University of Heart Center Hamburg-Eppendorf, Germany (C.M., T.Z., S.B., R.B.S.).
Neurology
March 2019
From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan.
Objective: We investigated differences in the anatomical distribution of cerebral microbleeds (CMBs) on MRI, hypothesized to indicate the type of underlying cerebral small vessel disease (SVD), between Eastern and Western general populations.
Methods: We analyzed data from 11 studies identified by a PubMed search between 1996 and April 2014 according to the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data. Study quality measures indicated low or medium risk of bias.
Neurology
January 2018
From the Department of Epidemiology (C.S., L.A.C., A.S.B., A.L.D., J.D.), Boston University School of Public Health; Boston University and the NHLBI's Framingham Heart Study (C.L.S., A.N.P., L.A.C., R.S.V., A.S.B., A.L.D., J.D., S.S.); Departments of Neurology (C.L.S., A.S.B., A.L.D., S.S.) and Cardiology, Preventive Medicine & Epidemiology (R.S.V.), Boston University School of Medicine, Boston, MA; Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis; Department of Physiology and Biophysics (J.G.W.), University of Mississippi Medical Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, University of Washington, Seattle; and Institute of Molecular Medicine (M.F.), University of Texas Health Science Center, Houston.
Objective: We sought to identify rare variants influencing brain imaging phenotypes in the Framingham Heart Study by performing whole genome sequence association analyses within the Trans-Omics for Precision Medicine Program.
Methods: We performed association analyses of cerebral and hippocampal volumes and white matter hyperintensity (WMH) in up to 2,180 individuals by testing the association of rank-normalized residuals from mixed-effect linear regression models adjusted for sex, age, and total intracranial volume with individual variants while accounting for familial relatedness. We conducted gene-based tests for rare variants using (1) a sliding-window approach, (2) a selection of functional exonic variants, or (3) all variants.
Genome Biol
December 2016
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.
Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111).