11 results match your criteria: "Boston University and the NHLBI's Framingham Heart Study[Affiliation]"

X-chromosome-wide association study for Alzheimer's disease.

Mol Psychiatry

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.

Article Synopsis
  • A study was conducted to investigate the X-chromosome's role in Alzheimer's Disease (AD), which had been overlooked in previous genome-wide association studies.
  • The research included 115,841 AD cases and 613,671 controls, considering different X-chromosome inactivation (XCI) states in females.
  • While no strong genetic risk factors for AD were found on the X-chromosome, seven significant loci were identified, suggesting areas for future research.
View Article and Find Full Text PDF

Importance: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear.

Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist.

View Article and Find Full Text PDF

Stroke-associated intergenic variants modulate a human FOXF2 transcriptional enhancer.

Proc Natl Acad Sci U S A

August 2022

Alberta Children's Hospital Research Institute, University of Calgary, Calgary AB T2N 4N1, Canada.

SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors and , but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for , functional in human cells and zebrafish.

View Article and Find Full Text PDF

Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10. We additionally detected 14 novel loci at P < 5 × 10, specific to either Europeans or African Americans.

View Article and Find Full Text PDF

New insights into the genetic etiology of Alzheimer's disease and related dementias.

Nat Genet

April 2022

Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Clonal hematopoiesis of indeterminate potential (CHIP) is a new risk factor linked to higher chances of stroke, especially ischemic and hemorrhagic types, emphasizing its importance in understanding cardiovascular health.* -
  • This study analyzed data from over 78,000 individuals to explore the connection between CHIP and stroke, finding significant associations even after accounting for age, sex, and race.* -
  • The results indicated that certain mutated genes within CHIP were more strongly associated with different stroke types, suggesting that further research is necessary to understand these relationships better.*
View Article and Find Full Text PDF

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.

View Article and Find Full Text PDF

Distribution of cerebral microbleeds in the East and West: Individual participant meta-analysis.

Neurology

March 2019

From the Stroke Research Center, Department of Brain Repair & Rehabilitation, Institute of Neurology (Y.Y., D.W., A.C., D.J.W.), and Department of Statistical Science (G.A.), UCL, London, UK; Division of Neurology (Y.Y., H.H.), Department of Internal Medicine, Saga University Faculty of Medicine, Japan; Department of Neurology (A.B., S.R.P., J.R.R., S.S., P.A.W.), Boston University and the NHLBI's Framingham Heart Study; Department of Biostatistics (A.B., S.R.P.), Boston University, MA; Department of Radiology (M.A.v.B.), Leiden University Medical Center, the Netherlands; Department of Neurology (C.D.), University of California Davis; Department of Neurology (D.D.), Huashan Hospital, Fudan University, Shanghai, China; Icelandic Heart Association (V.G.), Kopavogur; University of Iceland (V.G.), Reykjavik; Department of Neurosurgery (T.I.), Kushiro City General Hospital; Faculty of Collaborative Regional Innovation (K.K.), Ehime University, Matsuyama, Japan; Department of Neurology (H.-M.K.), SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Intramural Research Program (L.J.L.), National Institute on Aging, Bethesda, MD; Therese Pei Fong Chow Research Center for Prevention of Dementia (V.M., Z.W., Y.X.), Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China; Stroke and Aging Research Group, Department of Medicine, School of Clinical Science at Monash Health (T.P., V.S.), and Department of Medicine, Peninsula Health and Clinical School, Central Clinical School (V.S.), Monash University, Melbourne, Australia; Center for Emotional and Behavioral Disorders (Y. Takashima), Hizen Psychiatric Center, Saga, Japan; Department of Diagnostic Radiology and Nuclear Medicine (Y. Tsushima), Gunma University Graduate School of Medicine; Research Program for Diagnostic and Molecular Imaging (Y. Tsushima), Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi; and Department of Neurology (S.Y.), Faculty of Medicine, Shimane University, Izumo, Japan.

Objective: We investigated differences in the anatomical distribution of cerebral microbleeds (CMBs) on MRI, hypothesized to indicate the type of underlying cerebral small vessel disease (SVD), between Eastern and Western general populations.

Methods: We analyzed data from 11 studies identified by a PubMed search between 1996 and April 2014 according to the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data. Study quality measures indicated low or medium risk of bias.

View Article and Find Full Text PDF

Whole genome sequence analyses of brain imaging measures in the Framingham Study.

Neurology

January 2018

From the Department of Epidemiology (C.S., L.A.C., A.S.B., A.L.D., J.D.), Boston University School of Public Health; Boston University and the NHLBI's Framingham Heart Study (C.L.S., A.N.P., L.A.C., R.S.V., A.S.B., A.L.D., J.D., S.S.); Departments of Neurology (C.L.S., A.S.B., A.L.D., S.S.) and Cardiology, Preventive Medicine & Epidemiology (R.S.V.), Boston University School of Medicine, Boston, MA; Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis; Department of Physiology and Biophysics (J.G.W.), University of Mississippi Medical Center, Jackson; Cardiovascular Health Research Unit (J.C.B.), Department of Medicine, University of Washington, Seattle; and Institute of Molecular Medicine (M.F.), University of Texas Health Science Center, Houston.

Objective: We sought to identify rare variants influencing brain imaging phenotypes in the Framingham Heart Study by performing whole genome sequence association analyses within the Trans-Omics for Precision Medicine Program.

Methods: We performed association analyses of cerebral and hippocampal volumes and white matter hyperintensity (WMH) in up to 2,180 individuals by testing the association of rank-normalized residuals from mixed-effect linear regression models adjusted for sex, age, and total intracranial volume with individual variants while accounting for familial relatedness. We conducted gene-based tests for rare variants using (1) a sliding-window approach, (2) a selection of functional exonic variants, or (3) all variants.

View Article and Find Full Text PDF

Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111).

View Article and Find Full Text PDF