110 results match your criteria: "Blades Enterprise Centre[Affiliation]"

In the present study, an in vitro-in vivo extrapolation of dissolution integrated to a physiologically based pharmacokinetics modeling approach, considering a product-specific particle size distribution and a self-buffering effect of the drug, is introduced and appears to be a promising translational modeling strategy to support drug product development, manufacturing changes and setting clinically relevant specifications for immediate release formulations containing ibuprofen and other weak acids with similar properties.

View Article and Find Full Text PDF

The AbsA1-AbsA2 two component signalling system of Streptomyces coelicolor has long been known to exert a powerful negative influence on the production of the antibiotics actinorhodin, undecylprodiginine and the Calcium-Dependent Antibiotic (CDA). Here we report the analysis of a ΔabsA2 deletion strain, which exhibits the classic precocious antibiotic hyper-production phenotype, and its complementation by an N-terminal triple-FLAG-tagged version of AbsA2. The complemented and non-complemented ΔabsA2 mutant strains were used in large-scale microarray-based time-course experiments to investigate the effect of deleting absA2 on gene expression and to identify the in vivo AbsA2 DNA-binding target sites using ChIP-on chip.

View Article and Find Full Text PDF

L-praziquantel (PZQ) pharmacokinetic data were analyzed from two relative bioavailability Phase 1 studies in adult, healthy subjects with two new oral dispersion tablet (ODT) formulations of L-PZQ administered under various combinations of co-administration with food, water, and/or crushing. Linear mixed effects models adequately characterized the noncompartmental estimates of the pharmacokinetic profiles in both studies. Dose, food, and formulation were found to significantly affect L-PZQ exposure in both studies.

View Article and Find Full Text PDF

Physiologically based pharmacokinetic modelling to guide drug delivery in older people.

Adv Drug Deliv Rev

October 2018

Simcyp Ltd (a Certara company), Blades Enterprise Centre, John Street, Sheffield, UK; Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK.

Older patients are generally not included in Phase 1 clinical trials despite being the population group who use the largest number of prescription medicines. Physiologically based pharmacokinetic (PBPK) modelling provides an understanding of the absorption and disposition of drugs in older patients. In this review, PBPK models used for the prediction of absorption and exposure of drugs after parenteral, oral and transdermal administration are discussed.

View Article and Find Full Text PDF

Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human hepatocytes: A siRNA-silencing-based approach.

Drug Metab Pharmacokinet

August 2018

Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK. Electronic address:

The first-order degradation rate constant (k) of cytochrome P450 (CYP) enzymes is a known source of uncertainty in the prediction of time-dependent drug-drug interactions (DDIs) in physiologically-based pharmacokinetic (PBPK) modelling. This study aimed to measure CYP k using siRNA to suppress CYP expression in primary human hepatocytes followed by incubation over a time-course and tracking of protein expression and activity to observe degradation. The magnitude of gene knockdown was determined by qPCR and activity was measured by probe substrate metabolite formation and CYP2B6-Glo™ assay.

View Article and Find Full Text PDF

Poor metabolisers of CYP2B6 (PM) require a lower dose of efavirenz because of serious adverse reactions resulting from the higher plasma concentrations associated with a standard dose. Treatment discontinuation is a common consequence in patients experiencing these adverse reactions. Such patients benefit from appropriate dose reduction, where efficacy can be achieved without the serious adverse reactions.

View Article and Find Full Text PDF

Data Generated by Quantitative Liquid Chromatography-Mass Spectrometry Proteomics Are Only the Start and Not the Endpoint: Optimization of Quantitative Concatemer-Based Measurement of Hepatic Uridine-5'-Diphosphate-Glucuronosyltransferase Enzymes with Reference to Catalytic Activity.

Drug Metab Dispos

June 2018

Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom (B.A., Z.M.A.-M., A.R.-H., J.B.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (A.D., M.N., J.J.N., T.C.G.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)

Quantitative proteomic methods require optimization at several stages, including sample preparation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analysis, with the final analysis stage being less widely appreciated by end-users. Previously reported measurement of eight uridine-5'-diphospho-glucuronosyltransferases (UGT) generated by two laboratories [using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT)] reflected significant disparity between proteomic methods. Initial analysis of QconCAT data showed lack of correlation with catalytic activity for several UGTs (1A4, 1A6, 1A9, 2B15) and moderate correlations for UGTs 1A1, 1A3, and 2B7 (s = 0.

View Article and Find Full Text PDF

Drug-induced cardiac arrhythmia, especially occurrence of torsade de pointes (TdP), has been a leading cause of attrition and post-approval re-labeling and withdrawal of many drugs. TdP is a multifactorial event, reflecting more than just drug-induced cardiac ion channel inhibition and QT interval prolongation. This presents a translational gap in extrapolating pre-clinical and clinical cardiac safety assessment to estimate TdP risk reliably, especially when the drug of interest is used in combination with other QT-prolonging drugs for treatment of diseases such as tuberculosis.

View Article and Find Full Text PDF

Human heart electrophysiology is complex biological phenomenon, which is indirectly assessed by the measured ECG signal. ECG trace is further analyzed to derive interpretable surrogates including QT interval, QRS complex, PR interval, and T wave morphology. QT interval and its modification are the most commonly used surrogates of the drug triggered arrhythmia, but it is known that the QT interval itself is determined by other nondrug related parameters, physiological and pathological.

View Article and Find Full Text PDF

Background: Postulating fetal exposure to xenobiotics has been based on animal studies; however, inter-species differences can make this problematic. Physiologically-based pharmacokinetic models may capture the rapid changes in anatomical, biochemical, and physiological parameters during fetal growth over the duration of pregnancy and help with interpreting laboratory animal data. However, these models require robust information on the longitudinal variations of system parameter values and their covariates.

View Article and Find Full Text PDF

Aim: The aim of the present study was to predict olanzapine (OLZ) exposure in individual patients using physiologically based pharmacokinetic modelling and simulation (PBPK M&S).

Methods: A 'bottom-up' PBPK model for OLZ was constructed in Simcyp® (V14.1) and validated against pharmacokinetic studies and data from therapeutic drug monitoring (TDM).

View Article and Find Full Text PDF

A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I, I, I); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation.

View Article and Find Full Text PDF

Mechanistic Physiologically Based Pharmacokinetic (PBPK) Model of the Heart Accounting for Inter-Individual Variability: Development and Performance Verification.

J Pharm Sci

April 2018

Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Krakow, Poland; Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK.

Article Synopsis
  • Modern approaches for assessing cardiac safety need accurate drug concentration-effect relationships, highlighting the importance of knowing drug levels in heart tissue and understanding variability among different subjects.
  • A mechanistic physiologically based pharmacokinetic model of the heart was developed using parameters from existing literature and programmed in R, estimating five key parameters relevant to drug behavior.
  • The model effectively simulated clinical data for amitriptyline, demonstrating its potential to enhance patient-specific safety assessments and predict drug concentrations in the heart for various substances.
View Article and Find Full Text PDF

Reverse Translation in PBPK and QSP: Going Backwards in Order to Go Forward With Confidence.

Clin Pharmacol Ther

February 2018

Centre for Applied Pharmacokinetics Research (CAPKR), University of Manchester, Manchester, UK.

Significant events have taken place shaping the recent industrialization of physiologically based pharmacokinetic in vitro-in vivo extrapolation (PBPK-IVIVE) use in drug development. Due to our knowledge gaps about drug-independent systems parameters, there are limitations in the use of purely IVIVE-based (bottom-up) approaches. This has encouraged combining the classical data analysis (top-down) with PBPK-IVIVE-linked models in order to optimize model parameters by taking advantage of observed clinical data.

View Article and Find Full Text PDF

Incompatibility of chemical protein synthesis inhibitors with accurate measurement of extended protein degradation rates.

Pharmacol Res Perspect

October 2017

Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, L69 3GF, United Kingdom.

Protein synthesis inhibitors are commonly used for measuring protein degradation rates, but may cause cytotoxicity via direct or indirect mechanisms. This study aimed to identify concentrations providing optimal inhibition in the absence of overt cytotoxicity. Actinomycin D, cycloheximide, emetine, and puromycin were assessed individually, and in two-, three-, and four-drug combinations for protein synthesis inhibition (IC ) and cytotoxicity (CC ) over 72 h.

View Article and Find Full Text PDF

The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available.

View Article and Find Full Text PDF

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling.

View Article and Find Full Text PDF

Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

Drug Metab Dispos

October 2017

Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R.-H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut (A.D., M.N., J.J.N., T.C.G.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom (A.R.-H.)

Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( = 59).

View Article and Find Full Text PDF

Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

CPT Pharmacometrics Syst Pharmacol

August 2017

Office of Research and Standards, Office of Generic Drugs, US Food and Drug Administration, Silver Spring, Maryland, USA.

On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework.

View Article and Find Full Text PDF

Following a meal, a transient increase in splanchnic blood flow occurs that can result in increased exposure to orally administered high-extraction drugs. Typically, physiologically based pharmacokinetic (PBPK) models have incorporated this increase in blood flow as a time-invariant fed/fasted ratio, but this approach is unable to explain the extent of increased drug exposure. A model for the time-varying increase in splanchnic blood flow following a moderate- to high-calorie meal (TV-Q ) was developed to describe the observed data for healthy individuals.

View Article and Find Full Text PDF

The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed.

View Article and Find Full Text PDF

Global Proteomic Analysis of Human Liver Microsomes: Rapid Characterization and Quantification of Hepatic Drug-Metabolizing Enzymes.

Drug Metab Dispos

June 2017

Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom

Many genetic and environmental factors lead to interindividual variations in the metabolism and transport of drugs, profoundly affecting efficacy and toxicity. Precision dosing, that is, targeting drug dose to a well characterized subpopulation, is dependent on quantitative models of the profiles of drug-metabolizing enzymes (DMEs) and transporters within that subpopulation, informed by quantitative proteomics. We report the first use of ion mobility-mass spectrometry for this purpose, allowing rapid, robust, label-free quantification of human liver microsomal (HLM) proteins from distinct individuals.

View Article and Find Full Text PDF

Present studies determined the effects of pretreatment with rifampicin, an organic anion-transporting polypeptide (OATP) inhibitor, and the tyrosine kinase inhibitor dasatinib on OATP1B1- and OATP1B3-mediated transport, and evaluated the OATP-mediated drug-drug interaction potential of dasatinib using the static R-value and dynamic physiologically based pharmacokinetic models. Rifampicin and dasatinib pretreatment significantly decreased OATP1B1- and OATP1B3-mediated transport. Rifampicin pretreatment also significantly decreased [H]-pitavastatin and [H]-CCK-8 accumulation in human sandwich-cultured hepatocytes.

View Article and Find Full Text PDF

Systems Toxicology: Real World Applications and Opportunities.

Chem Res Toxicol

April 2017

Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland.

Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data.

View Article and Find Full Text PDF

Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance.

Drug Metab Dispos

May 2017

Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom

In vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker.

View Article and Find Full Text PDF