63 results match your criteria: "Biotechnology Institute Thurgau at the University of Konstanz[Affiliation]"

HLA-F adjacent transcript 10 (FAT10) is a cytokine-inducible ubiquitin-like modifier that is highly expressed in the thymus and directly targets FAT10-conjugated proteins for degradation by the proteasome. High expression of FAT10 in the mouse thymus could be assigned to strongly autoimmune regulator-expressing, mature medullary thymic epithelial cells, which play a pivotal role in negative selection of T cells. Also in the human thymus, FAT10 is localized in the medulla but not the cortex.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies ubiquitin-specific protease USP8 as a key regulatory component in T cell signaling and its interaction with Gads and 14-3-3β.
  • USP8 is crucial for thymocyte maturation and the upregulation of the IL-7Rα gene by the transcription factor Foxo1.
  • Mice deficient in USP8 in T cells develop colitis due to disrupted T cell balance, suggesting that USP8 plays a significant role in immune regulation.
View Article and Find Full Text PDF

The ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) directly targets its substrates for proteasomal degradation by becoming covalently attached via its C-terminal diglycine motif to internal lysine residues of its substrate proteins. The conjugation machinery consists of the bispecific E1 activating enzyme Ubiquitin-like modifier activating enzyme 6 (UBA6), the likewise bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1 (USE1), and possibly E3 ligases. By mass spectrometry analysis the ubiquitin E1 activating enzyme ubiquitin-activating enzyme 1 (UBE1) was identified as putative substrate of FAT10.

View Article and Find Full Text PDF

Bacterial invasion of eukaryotic cells is counteracted by cell-autonomous innate immune mechanisms including xenophagy. The decoration of cytosolic bacteria by ubiquitylation and binding of galectin-8 leads to recruitment of autophagy adaptors like p62 (also known as SQSTM1), NDP52 (also known as CALCOCO2) and optineurin, which initiate the destruction of bacteria by xenophagy. Here, we show that the functionally barely characterized IFNγ- and TNFα-inducible ubiquitin-like modifier FAT10 (also known as ubiquitin D, UBD), which binds to the autophagy adaptor p62, but has not been shown to associate with pathogens before, is recruited to cytosolic Salmonella Typhimurium in human cells.

View Article and Find Full Text PDF

Day of the dead: pseudokinases and pseudophosphatases in physiology and disease.

Trends Cell Biol

September 2014

Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Department of Biology, University of Konstanz, Konstanz, Germany. Electronic address:

Pseudophosphatases and pseudokinases are increasingly viewed as integral elements of signaling pathways, and there is mounting evidence that they have frequently retained the ability to interact with cellular 'substrates', and can exert important roles in different diseases. However, these pseudoenzymes have traditionally received scant attention compared to classical kinases and phosphatases. In this review we explore new findings in the emerging pseudokinase and pseudophosphatase fields, and discuss their different modes of action which include exciting new roles as scaffolds, anchors, spatial modulators, traps, and ligand-driven regulators of canonical kinases and phosphatases.

View Article and Find Full Text PDF

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+).

Cell Death Dis

May 2014

Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz D-78457, Germany.

Assessment of the network of toxicity pathways by Omics technologies and bioinformatic data processing paves the road toward a new toxicology for the twenty-first century. Especially, the upstream network of responses, taking place in toxicant-treated cells before a point of no return is reached, is still little explored. We studied the effects of the model neurotoxicant 1-methyl-4-phenylpyridinium (MPP(+)) by a combined metabolomics (mass spectrometry) and transcriptomics (microarrays and deep sequencing) approach to provide unbiased data on earliest cellular adaptations to stress.

View Article and Find Full Text PDF

The effect of trauma-focused therapy on the altered T cell distribution in individuals with PTSD: evidence from a randomized controlled trial.

J Psychiatr Res

July 2014

Center of Excellence for Psychotraumatology, Clinical Psychology and Neuropsychology, University of Konstanz, Germany; Clinical and Biological Psychology, Institute of Psychology and Education, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany. Electronic address:

Posttraumatic stress disorder (PTSD) is associated with a reduced ratio of naïve cytotoxic T lymphocytes, an increased ratio of memory cytotoxic T lymphocytes, and a reduced proportion of FoxP3(+) regulatory T lymphocytes. This study investigated whether these immunological alterations are reversible through an evidence-based psychotherapeutic treatment. Therefore, 34 individuals with PTSD were randomly assigned to either a treatment condition of 12 sessions narrative exposure therapy (NET) or a waitlist control (WLC) group.

View Article and Find Full Text PDF

Unlabelled: The cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) targets its substrates for degradation by the proteasome. FAT10 is conjugated to its substrates via the bispecific, ubiquitin-activating and FAT10-activating enzyme UBA6, the likewise bispecific conjugating enzyme UBA6-specific E2 enzyme 1 (USE1), and possibly E3 ligases. By MS analysis, we found that USE1 undergoes self-FAT10ylation in cis, mainly at Lys323.

View Article and Find Full Text PDF

The unique functions of tissue-specific proteasomes.

Trends Biochem Sci

January 2014

Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland. Electronic address:

The 26S proteasome is the main protease in eukaryotes. Proteolysis occurs within the cylindrical 20S proteasome that is constitutively expressed in most tissues. However, three tissue-specific versions of the 20S proteasome have been discovered to date.

View Article and Find Full Text PDF

The major histocompatibility complex (MHC) class I restricted pathway of antigen processing allows the presentation of intracellular antigens to cytotoxic T lymphocytes. The proteasome is the main protease in the cytoplasm and the nucleus, which is responsible for the generation of most peptide ligands of MHC-I molecules. Peptides produced by the proteasome can be further trimmed or destroyed by numerous cytosolic or endoplasmic reticulum (ER) lumenal proteases.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key in regulating immune responses. DCs reside in tissues facing the environment and sample their surrounding for pathogens. Upon pathogen encounter, DCs mature and migrate into secondary lymphoid organs.

View Article and Find Full Text PDF

Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer.

View Article and Find Full Text PDF

Soluble CD21 (sCD21), released from the plasma membrane by proteolytic cleavage (shedding) of its extracellular domain (ectodomain) blocks B cell/follicular dendritic cell interaction and activates monocytes. We show here that both serine- and metalloproteases are involved in CD21 shedding. Using the oxidant pervanadate to mimic B cell receptor activation and thiol antioxidants such as N-acetylcysteine (NAC) and glutathione (GSH) we show that CD21 shedding is a redox-regulated process inducible by oxidation presumably through activation of a tyrosine kinase-mediated signal pathway involving protein kinase C (PKC), and by reducing agents that either directly activate the metalloprotease and/or modify intramolecular disulfide bridges within CD21 and thereby facilitate access to the cleavage site.

View Article and Find Full Text PDF