A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona4hgqidqbsnvoa4r5q6hsap7q22qgvgk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioprocessing Technology Institute[Affi... Publications | LitMetric

671 results match your criteria: "Bioprocessing Technology Institute[Affiliation]"

SWATH-MS insights on sodium butyrate effect on mAbs production and redox homeostasis in CHO cells.

AMB Express

December 2024

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.

Sodium butyrate (NaBu), well-known as a histone deacetylase inhibitor and for its capacity to impede cell growth, can enhance the production of a specific protein, such as an antibody, in recombinant Chinese hamster ovary (CHO) cell cultures. In this study, two CHO cell lines, namely K1 and DG44, along with their corresponding mAb-producing lines, K1-Pr and DG44-Pr, were cultivated with or without NaBu. A SWATH-based profiling method was employed to analyze the proteome.

View Article and Find Full Text PDF

A Novel Crosslinking Approach for Biomanufacturing of a Collagen-Based Skin Dermal Template.

Macromol Biosci

December 2024

Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore.

Third-degree burns result in extensive damage to the skin's epidermal and dermal layers, with limited treatment options available. Currently, xenogeneic collagen-based skin grafts are used as scaffolds to integrate into the wound bed and provide a template for neodermis formation. Existing commercial products like Integra dermal templates rely on a time-consuming and variable dehydrothermal (DHT) crosslinking process.

View Article and Find Full Text PDF

Exploring cost reduction strategies for serum free media development.

NPJ Sci Food

December 2024

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.

Cultivated meat production offers solutions in addressing global food security and sustainability challenges. However, serum-free media (SFM) used in cultivating the cells are expensive, contributing to at least 50% of variable operating costs. This review explores technologies for cost-effective SFM, focusing on reducing cost from using growth factors and recombinant proteins, using affordable raw materials for basal media, and implementing cost-saving measures like media recycling and reducing waste build-up.

View Article and Find Full Text PDF

Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts.

NPJ Sci Food

December 2024

Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.

Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin.

View Article and Find Full Text PDF

Sdd3 regulates the biofilm formation of via the Rho1-PKC-MAPK pathway.

mBio

December 2024

A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

, the most frequently isolated fungal pathogen in humans, forms biofilms that enhance resistance to antifungal drugs and host immunity, leading to frequent treatment failure. Understanding the molecular mechanisms governing biofilm formation is crucial for developing anti-biofilm therapies. In this study, we conducted a genetic screen to identify novel genes that regulate biofilm formation in .

View Article and Find Full Text PDF

Potassium ions (K) released from dying necrotic tumour cells accumulate in the tumour microenvironment (TME) and increase the local K concentration to 50 mM (high-[K]). Here, we demonstrate that high-[K] decreases expression of the T-cell receptor subunits CD3ε and CD3ζ and co-stimulatory receptor CD28 and thereby dysregulates intracellular signal transduction cascades. High-[K] also alters the metabolic profiles of T-cells, limiting the metabolism of glucose and glutamine, consistent with functional exhaustion.

View Article and Find Full Text PDF

Removing immunogenic double-stranded RNA impurities post in vitro transcription synthesis for mRNA therapeutics production: A review of chromatography strategies.

J Chromatogr A

December 2024

Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore. Electronic address:

Messenger RNA (mRNA) vaccines and therapeutics hold immense potential for a wide range of clinical applications. However, the in vitro transcription (IVT) process used to synthesize mRNA also results in the generation of a by-product, double-stranded RNA (dsRNA), which can trigger innate immune activation and reduce translation activity. Although various efforts have been made to optimize IVT synthesis to minimize dsRNA formation, dsRNA impurities still cannot be fully resolved.

View Article and Find Full Text PDF

Cell sampling is a key step performed regularly throughout the cell manufacturing process to gather cell samples for cell growth, progress, and characteristics analysis. While the current method of sampling by pipetting in a biosafety cabinet is commonly used, it is labour-intensive and susceptible to contamination risks. We have developed Device for Automated Aseptic Sampling (DAAS), to enable automated, small volume (0.

View Article and Find Full Text PDF

Cellulose functionalized magnetic beads for high throughput glycosylation analysis in biotherapeutic modalities.

Sci Rep

November 2024

Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.

The increasing demand for biotherapeutics has necessitated the evaluation of their critical quality attributes, one of which is glycosylation, an essential post-translational modification found on many biological molecules. In particular, the purification of N-glycans after their release from the proteins and derivatization is important in ensuring the removal of the deglycosylated protein, excess labelling reagents and salts for subsequent analysis. However, current methods of N-glycans purification are either expensive, laborious, time-consuming or not catered for high throughput analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized a genome scale model of CHO cells to explore how different feed media compositions affect cellular metabolism, leading to insights about amino acid dependencies.
  • * Findings indicate that CHO cells preferentially utilize asparagine over aspartate, and adjusting the ratios of these amino acids in feed media can significantly enhance cell culture performance.
View Article and Find Full Text PDF

Existing low pH viral inactivation methods for continuous downstream processing of biologics typically rely on predictive models to estimate the necessary pH adjustments. However, these methods are of limited use during the process development stage due to the dynamic nature of capture chromatography, where batch variations can alter the eluted protein titer. This study introduces an inline viral inactivation system (IVIS) that utilizes real-time adaptive control and inline sensor readings to precisely regulate the pH manipulation for inline acidification and continuous viral inactivation.

View Article and Find Full Text PDF

Background: The manufacturing of T cell therapies aims to achieve high yields of product with potent phenotypes. We have developed a novel bioreactor, bioreactor with expandable culture area-dual chamber (BECA-D), which has previously demonstrated functionality for scaled T cell manufacturing.

Methods And Results: Methods and Results: In this study, incorporation of a stirring mechanism into the double-chamber bioreactor design was tested to homogenize the media components between the two chambers.

View Article and Find Full Text PDF

Thermal and pH stress dictate distinct mechanisms of monoclonal antibody aggregation.

Int J Biol Macromol

December 2024

Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. Electronic address:

Protein aggregation is a significant challenge in the development of monoclonal antibodies (mAbs), which can be exacerbated by stress conditions encountered along its production pipeline. In this study, we examine how thermal and pH stress conditions influence mAb aggregation mechanisms. We observe a complex interplay between these factors that significantly affects mAb stability, particularly under combined stress conditions.

View Article and Find Full Text PDF

Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P.

View Article and Find Full Text PDF

Advancements and regulations of biomanufacturing cell-based cartilage repair therapies.

Trends Biotechnol

October 2024

Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Singapore 138668. Electronic address:

Cell-based therapies for cartilage repair, including autologous chondrocyte implantation and allogeneic stem cell treatments, show great promise but face challenges due to high costs and regulatory hurdles. This review summarizes available and investigational products, focusing on allogeneic therapies and the impact of diverse regulatory landscapes on their clinical translation.

View Article and Find Full Text PDF

Rapid manufacturing of CAR-T therapy: strategies and impact.

Trends Biotechnol

October 2024

Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 138668, Singapore. Electronic address:

The accessibility of autologous chimeric antigen receptor T cell (CAR-T) therapies is challenged by the complex processes and capacity constraints of manufacturing. Rapid manufacturing capable of shortening manufacturing timelines could transform the CAR-T field. Here, we outline approaches to rapid CAR-T manufacturing, highlighting its impact on various stakeholders in the landscape.

View Article and Find Full Text PDF

Integrative approach to assessing bioactivity from hempseed protein isolate extracted and dehydrated by different methods: Synergising in silico prediction and in vitro validation.

Food Chem

January 2025

Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand. Electronic address:

This study demonstrated a comprehensive workflow combining in silico screening and prediction with in vitro validation to investigate the bioactivity of hempseed protein isolate (HPI) extracted and dehydrated using different methods. By adopting an in silico approach, 13 major proteins of HPI were hydrolysed by 20 selected enzymes, leading to the prediction of 20 potential bioactivities. With papain hydrolysis, dipeptidyl peptidase-IV (DPP4) and angiotensin-converting enzyme (ACE) inhibitory activities emerged as having the highest potential.

View Article and Find Full Text PDF

This report describes the development and characterization of a comprehensive collection of CHO cell glycosylation mutants with significant potential for advancing glycobiology and biotechnology. EPO-Fc and trastuzumab, two model molecules, were produced using these mutants to assess the effects of mutated glycogenes, and LC-MS/MS analysis was employed to quantitatively analyse their N-glycans. EPO-Fc exhibited exclusively homogeneous Man9 glycans only when nearly all α-mannosidases in the genome were inactivated, except lysosomal MAN2B1.

View Article and Find Full Text PDF

Unlabelled: The vaginal microbiome is a key player in the etiology of spontaneous preterm birth. This study aimed to illustrate maternal environmental factors associated with vaginal microbiota composition and function in pregnancy. Women in healthy pregnancy had vaginal microbial sampling from the posterior vaginal fornix performed at 16 weeks gestation.

View Article and Find Full Text PDF

Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor.

View Article and Find Full Text PDF

The bio-pharmaceutical industry heavily relies on mammalian cells for the production of bio-therapeutic proteins. The complexity of implementing and high cost-of-goods of these processes are currently limiting more widespread patient access. This is driving efforts to enhance cell culture productivity and cost reduction.

View Article and Find Full Text PDF

Bispecific antibodies (bsAbs) hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies. However, bsAbs pose great challenges in their manufacturing, and one of the common reasons is their susceptibility to aggregation. Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb, this investigation delved into the impact of environmental factors-such as pH, buffer types, ionic strength, protein concentrations, and temperatures-on its stability and the reversal of its self-associated aggregates.

View Article and Find Full Text PDF

Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures.

View Article and Find Full Text PDF