8 results match your criteria: "Biopolo Hospital La Fe[Affiliation]"

Background/objectives: Magnesium (Mg)-based food supplements contribute to the maintenance of adequate levels of Mg that are essential for overall health and well-being. The aim of this double-blind, randomized, cross-over clinical study was to assess the plasma Mg levels in volunteers following the oral administration of a magnesium-based nutraceutical ingredient, MAGSHAPE microcapsules (Mg-MS), in comparison to other commonly used magnesium sources, including the following: Mg Oxide (MgO), Mg Citrate (Mg-C), and Mg bisglycinate (Mg-BG).

Methods: A total of 40 healthy women and men were put on a low-Mg diet for 7 days, and after 8 h of fasting, a blood sample was taken from a digital puncture before (0 h) and 1 h, 4 h, and 6 h after the oral intake of each product.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues.

View Article and Find Full Text PDF

KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored.

View Article and Find Full Text PDF

KRAS, HRAS and NRAS oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS oncoproteins consist of a globular G-domain (aa1-166) and a 22-23aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionarily origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) is a rare, genetic neurodegenerative disorder caused by mutant huntingtin protein with excessive glutamines, leading to toxicity and protein aggregation in neurons.
  • A new compound, Mn(II) quinone complex (4QMn), acts as an artificial superoxide dismutase and has been shown to enhance protein clearance pathways, including the ubiquitin-proteasome system and autophagy, in HD models.
  • By activating these pathways, 4QMn can help degrade toxic proteins associated with HD, suggesting it may be a promising candidate for developing effective therapies for the disease.
View Article and Find Full Text PDF

NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis.

View Article and Find Full Text PDF

Continuous overexposure to sunlight increases its harmful effects on the skin. For this reason, there is a growing need to characterize economic models more representative of the negative effects and counteracting responses that irradiation causes on human skin. These models will serve for the screening of protective compounds against damage caused by ultraviolet (UV) and high energy visible light (HEV).

View Article and Find Full Text PDF

Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity.

J Inorg Biochem

February 2015

Instituto de Ciencia Molecular, Universidad de Valencia, C/catedrático José Beltrán no. 2, 46980 Paterna, Valencia, Spain. Electronic address:

Manganese complexes of polyamines consisting of an aza-pyridinophane macrocyclic core functionalised with side chains containing quinoline or pyridine units have been characterised by a variety of solution techniques and single crystal x-ray diffraction. Some of these compounds have proved to display interesting antioxidant capabilities in vitro and in vivo in prokaryotic (bacteria) and eukaryotic (yeast and fish embryo) organisms. In particular, the Mn complex of the ligand containing a 4-quinoline group in its side arm which, as it happens in the MnSOD enzymes, has a water molecule coordinated to the metal ion that shows the lowest toxicity and highest functional efficiency both in vitro and in vivo.

View Article and Find Full Text PDF