5 results match your criteria: "Biophotonics Center and Department of Biomedical Engineering[Affiliation]"

Despite its high cost, the success rate for in vitro fertilization (IVF) remains < 33% in humans, driving the need for new techniques to improve embryo culture outcomes. The well-of-the-well (WOW) culture system is a platform for in-vitro mammalian embryo culture that has been shown to enhance the developmental competence of embryos and clinical pregnancy rates in humans. However, discovery and testing of the best design for optimal embryo culture quality is hindered by the lack of a method to flexibly produce WOW dishes of various designs.

View Article and Find Full Text PDF

Low-Cost, Volume-Controlled Dipstick Urinalysis for Home-Testing.

J Vis Exp

May 2021

Vanderbilt Biophotonics Center and Department of Biomedical Engineering, Vanderbilt University; Department of Electrical Engineering and Computer Science, Vanderbilt University;

Dipstick urinalysis provides quick and affordable estimations of multiple physiological conditions but requires good technique and training to use accurately. Manual performance of dipstick urinalysis relies on good human color vision, proper lighting control, and error-prone, time-sensitive comparisons to chart colors. By automating the key steps in the dipstick urinalysis test, potential sources of error can be eliminated, allowing self-testing at home.

View Article and Find Full Text PDF

Advancing human health in the decade ahead: pregnancy as a key window for discovery: A Burroughs Wellcome Fund Pregnancy Think Tank.

Am J Obstet Gynecol

September 2020

Office of the President, Burroughs Wellcome Fund, Research Triangle Park, NC. Electronic address:

Recent revolutionary advances at the intersection of medicine, omics, data sciences, computing, epidemiology, and related technologies inspire us to ponder their impact on health. Their potential impact is particularly germane to the biology of pregnancy and perinatal medicine, where limited improvement in health outcomes for women and children has remained a global challenge. We assembled a group of experts to establish a Pregnancy Think Tank to discuss a broad spectrum of major gestational disorders and adverse pregnancy outcomes that affect maternal-infant lifelong health and should serve as targets for leveraging the many recent advances.

View Article and Find Full Text PDF

Beyond the H&E: Advanced Technologies for in situ Tissue Biomarker Imaging.

ILAR J

December 2018

Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee.

For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets.

View Article and Find Full Text PDF

Neurophotonics is an exploding field that spans the intersection of light and neurons for fundamental discovery and clinical translation. Optical technologies have significantly impacted brain research by probing into the mysteries of the brain, modulating brain activity, and improving patient care. Based on a discussion held at the International Conference on Biophotonics 2017, a group of leading researchers brainstormed to identify areas of unmet need in neuroscience and medicine, where biophotonics research could have the highest affect.

View Article and Find Full Text PDF