158 results match your criteria: "Biological Information Research Center[Affiliation]"

Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy.

View Article and Find Full Text PDF

Accumulated evidence suggests a physiological relationship between the transcription factor NRF3 (NFE2L3) and cancers. Under physiological conditions, NRF3 is repressed by its endoplasmic reticulum (ER) sequestration. In response to unidentified signals, NRF3 enters the nucleus and modulates gene expression.

View Article and Find Full Text PDF

Two-thiouridine (sU) at position 54 of transfer RNA (tRNA) is a posttranscriptional modification that enables thermophilic bacteria to survive in high-temperature environments. sU is produced by the combined action of two proteins, 2-thiouridine synthetase TtuA and 2-thiouridine synthesis sulfur carrier protein TtuB, which act as a sulfur (S) transfer enzyme and a ubiquitin-like S donor, respectively. Despite the accumulation of biochemical data in vivo, the enzymatic activity by TtuA/TtuB has rarely been observed in vitro, which has hindered examination of the molecular mechanism of S transfer.

View Article and Find Full Text PDF

Incorporation of a sulfur atom into 2-thioribothymidine (s T or 5-methyl-2-thiouridine) at position 54 in thermophile tRNA is accomplished by an elaborate system composed of many proteins which confers thermostability to the translation system. We identified ttuD (tRNA-two-thiouridine D) as a gene for the synthesis of s T54 in Thermus thermophilus. The rhodanese-like protein TtuD enhances the activity of cysteine desulfurases and receives the persulfide generated by cysteine desulfurases in vitro.

View Article and Find Full Text PDF

USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

Biochem Biophys Res Commun

September 2016

Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan. Electronic address:

The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear.

View Article and Find Full Text PDF

Folate-/FAD-dependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures.

Genes Cells

July 2016

Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

TrmFO is a N(5) , N(10) -methylenetetrahydrofolate (CH2 THF)-/FAD-dependent tRNA methyltransferase, which synthesizes 5-methyluridine at position 54 (m(5) U54) in tRNA. Thermus thermophilus is an extreme-thermophilic eubacterium, which grows in a wide range of temperatures (50-83 °C). In T.

View Article and Find Full Text PDF

The interactions between tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and TNF superfamily receptors (TNFRSFs) are promising targets for rheumatoid arthritis (RA) treatment. However, due to the challenging nature of protein-protein interactions (PPIs), a potent inhibitor that surpasses the affinity of the TRAF6-TNFRSF interactions has not been developed. We developed a small-molecule PPI inhibitor of TRAF6-TNFRSF interactions using NMR and in silico techniques.

View Article and Find Full Text PDF

Artificial human Met agonists based on macrocycle scaffolds.

Nat Commun

March 2015

Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Hepatocyte growth factor (HGF) receptor, also known as Met, is a member of the receptor tyrosine kinase family. The Met-HGF interaction regulates various signalling pathways involving downstream kinases, such as Akt and Erk. Met activation is implicated in wound healing of tissues via multiple biological responses triggered by the above-mentioned signalling cascade.

View Article and Find Full Text PDF

A new downregulator of the molecular chaperone GRP78, actinopyrone D, was isolated together with a known related compound, PM050463, from Streptomyces sp. RAG92. The molecular formula of actinopyrone D was established as C25H36O4 by high-resolution FAB-MS.

View Article and Find Full Text PDF

Background: Proteins interact with other proteins or biomolecules in complexes to perform cellular functions. Existing protein-protein interaction (PPI) databases and protein complex databases for human proteins are not organized to provide protein complex information or facilitate the discovery of novel subunits. Data integration of PPIs focused specifically on protein complexes, subunits, and their functions.

View Article and Find Full Text PDF

The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein's sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set (n = 512) of insertions and deletions (indels) and single nucleotide polymorphisms causing premature termination of translation in disease-related genes.

View Article and Find Full Text PDF

Ligand-based and structure-based drug screening methods were integrated for in silico drug development by combining the maximum-volume overlap (MVO) method with a protein-compound docking program. The MVO method is used to select reliable docking poses by calculating volume overlaps between the docking pose in question and the known ligand docking pose, if at least a single protein-ligand complex structure is known. In the present study, the compounds in a database were docked onto a target protein that had a known protein-ligand complex structure.

View Article and Find Full Text PDF

We have developed a method for estimating protein-ligand binding free energy (DG) based on the direct protein-ligand interaction obtained by a molecular dynamics simulation. Using this method, we estimated the DG value statistically by the average values of the van der Waals and electrostatic interactions between each amino acid of the target protein and the ligand molecule. In addition, we introduced fluctuations in the accessible surface area (ASA) and dihedral angles of the protein-ligand complex system as the entropy terms of the DG estimation.

View Article and Find Full Text PDF

Complex diseases result from contributions of multiple genes that act in concert through pathways. Here we present a method to prioritize novel candidates of disease-susceptibility genes depending on the biological similarities to the known disease-related genes. The extent of disease-susceptibility of a gene is prioritized by analyzing seven features of human genes captured in H-InvDB.

View Article and Find Full Text PDF

Prediction of ligand-binding sites of proteins by molecular docking calculation for a random ligand library.

Protein Sci

January 2011

Protein Structural Information Analysis Team, Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan.

A new approach to predicting the ligand-binding sites of proteins was developed, using protein-ligand docking computation. In this method, many compounds in a random library are docked onto the whole protein surface. We assumed that the true ligand-binding site would exhibit stronger affinity to the compounds in the random library than the other sites, even if the random library did not include the ligand corresponding to the true binding site.

View Article and Find Full Text PDF

The glucuronide transporter GusB, the product of the gusB gene from Escherichia coli, is responsible for detoxification of metabolites. In this study, we successfully expressed GusB homologously in E. coli and investigated its oligomeric state in n-dodecyl-beta-D: -maltoside (DDM) detergent solution.

View Article and Find Full Text PDF

Development of Chemical Compound Libraries for In Silico Drug Screening.

Curr Comput Aided Drug Des

February 2017

Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan.

Chemical compound libraries are the basic database for virtual (in silico) drug screening, and the number of entries has reached 20 million. Many drug-like compound libraries for virtual drug screening have been developed and released. In this review, the process of constructing a database for virtual screening is reviewed, and several popular databases are introduced.

View Article and Find Full Text PDF

High-throughput kinase assay based on surface plasmon resonance.

Methods Mol Biol

June 2010

Protein Expression Team, Japan Biological Information Research Center, Japan Biological Informatics Consortium, Tokyo, Japan.

We have designed a novel high-throughput (HTP) kinase assay using an array-based surface plasmon resonance (SPR) apparatus. For high flexibility and performance, the kinase assay procedure is divided into an in vitro phosphorylation part and a phospho-detection part on a sensor chip. Not only biotinylated peptides but also recombinant proteins fused with FLAG-GST tandem tag can be used as native substrates.

View Article and Find Full Text PDF

Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under unstressed conditions Keap1 binds Nrf2 and results in rapid degradation of Nrf2 through the proteasome pathway.

View Article and Find Full Text PDF

The dihydropyridine receptor (DHPR) is a protein complex that consists of five distinct subunits of alpha(1), alpha(2), beta, gamma and delta and functions as a voltage-dependent L-type Ca(2+) channel. Here we purified the alpha(1)-beta complex (approximately 250 kDa) from the rabbit skeletal muscle DHPR and reconstructed its three-dimensional (3D) structure to 38 A resolution by single particle analysis of negative staining electron microscopy. The alpha(1)-beta structure exhibited two unique regions: a pseudo-4-fold petaloid region and an elongated region.

View Article and Find Full Text PDF

Summary: G-compass is designed for efficient comparative genome analysis between human and other vertebrate genomes. The current version of G-compass allows us to browse two corresponding genomic regions between human and another species in parallel. One-to-one evolutionarily conserved regions (i.

View Article and Find Full Text PDF

Telomestatin (TMS: 1) is as a potent and selective telomeric G-quadruplex binder. Two molecules of TMS were suggested to be intercalated to one telomeric G-quadruplex according to docking study. In this paper, we designed and synthesized hexaoxazole TMS derivative (6OTD) dimer, and evaluated its G-quadruplex stabilizing ability.

View Article and Find Full Text PDF

Guanine-rich DNA sequences form unique three-dimensional conformation known as G-quadruplexes (G-q). G-q structures have been found in telomere and in some oncogene promoter. Recently, it was suggested that G-q showed some biological activities including telomere shortening and transcriptional regulation.

View Article and Find Full Text PDF

The electronic structure and magnetic interactions of the active site of sweet potato purple acid phosphatase (PAP) were investigated by using UHF, pure DFT (UBLYP), and hybrid DFT methods (UB3LYP and UB2LYP). PAP catalyzes the hydrolysis of a phosphate ester under acidic conditions and contains a binuclear metal center. Sweet potato PAP provides stronger antiferromagnetic coupling than other PAPs.

View Article and Find Full Text PDF