73 results match your criteria: "Biocomputation and Complex Systems Physics Institute[Affiliation]"
Microbiology (Reading)
December 2011
Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain.
The interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium Anabaena sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α-furA RNA is involved in the modulation of the global regulator FurA.
View Article and Find Full Text PDFPlant Cell Physiol
November 2010
Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, 50009 Zaragoza, Spain.
Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth.
View Article and Find Full Text PDFJ Biol Chem
August 2008
Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain.
Uptake of low density lipoproteins (LDL) by their receptor, LDLR, is the primary mechanism by which cells incorporate cholesterol from plasma. Mutations in LDLR lead to familial hypercholesterolemia, a common disease affecting 1 in 500 of the human population. LDLR is a modular protein that uses several small repeats to bind LDL.
View Article and Find Full Text PDFBiophys J
August 2008
Biocomputation and Complex Systems Physics Institute and Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
Partly unfolded protein conformations close in energy to the native state may be involved in protein functioning and also be related to folding diseases, but yet their structure and energetics are poorly understood. One such conformation, the monomeric and well-behaved molten globule of Helicobacter pylori apoflavodoxin, is here investigated to provide, in a wide pH interval, a complete thermodynamic description of its unfolding equilibrium and the equilibrium linking molten globule and native state. All thermodynamic and molecular properties of the molten globule here analyzed are characteristic of a partly unfolded conformation, and their differences with those of the native state are typically quantitative rather than qualitative.
View Article and Find Full Text PDFBiochemistry
January 2008
Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, 50009-Zaragoza, Spain.
Flavodoxin has been recently recognized as an essential protein for a number of pathogenic bacteria including Helicobacter pylori, where it has been proposed to constitute a target for antibacterial drug development. One way we are exploring to screen for novel inhibitory compounds is to perform thermal upshift assays, for which a detailed knowledge of protein thermostability and cofactor binding properties is of great help. However, very little is known on the stability and ligand binding properties of H.
View Article and Find Full Text PDFJ Biol Chem
February 2008
Biocomputation and Complex Systems Physics Institute, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragosa, Zaragosa, Spain.
Flavodoxin is an essential protein for Helicobacter pylori, a pathogen living in the very acidic environment of the gastric tract and responsible for several diseases. We report the conformational stability of the protein in neutral and acidic pH. The apoprotein remains native between pH 12 and 5 and adopts a monomeric molten globule conformation at more acidic pH values.
View Article and Find Full Text PDFJ Mol Biol
November 2007
Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain.
Nitrogen signalling in cyanobacteria involves a complex network in which the availability of iron plays an important role. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, iron uptake is controlled by FurA, while NtcA is the master regulator of nitrogen metabolism and shows a mutual dependence with HetR in the first steps of heterocyst development.
View Article and Find Full Text PDFProteins
November 2007
Biocomputation and Complex Systems Physics Institute (BiFi), Universidad de Zaragoza, Unidad Asociada al IQFR-CSIC, Zaragoza, Spain.
Flavodoxins, noncovalent complexes between apoflavodoxins and flavin mononucleotide (FMN), are useful models to investigate the mechanism of protein/flavin recognition. In this respect, the only available crystal structure of an apoflavodoxin (that from Anabaena) showed a closed isoalloxazine pocket and the presence of a bound phosphate ion, which posed many questions on the recognition mechanism and on the potential physiological role exerted by phosphate ions. To address these issues we report here the X-ray structure of the apoflavodoxin from the pathogen Helicobacter pylori.
View Article and Find Full Text PDFProteins
August 2006
Departamento de Bioquímica y Biología Molecular y Celular & Biocomputation and Complex Systems Physics Institute BIFI, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
The energetics of alpha-helix formation are fairly well understood and the helix content of a given amino acid sequence can be calculated with reasonable accuracy from helix-coil transition theories that assign to the different residues specific effects on helix stability. In internal helical positions, alanine is regarded as the most stabilizing residue, whereas glycine, after proline, is the more destabilizing. The difference in stabilization afforded by alanine and glycine has been explained by invoking various physical reasons, including the hydrophobic effect and the entropy of folding.
View Article and Find Full Text PDFJ Mol Biol
June 2006
Departamento de Bioquímica y Biología Molecular y Celular (Facultad de Ciencias) & Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain.
Apoflavodoxin from Anabaena PCC 7119 is a 169 residue globular protein of known structure and energetics. Here, we present a comprehensive Phi-value analysis to characterize the structure of its transition state. A total of 34 non-disruptive mutations are made throughout the structure and a range of Phi-values from zero to one are observed.
View Article and Find Full Text PDFCell Mol Life Sci
April 2006
Dep. Bioquímica y Biología Molecular y Celular, Fac. Ciencias and Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Spain.
Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions in bacteria, whereas, in eukaryotes, a descendant of the flavodoxin gene helps build multidomain proteins. The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host apoprotein. This review covers the very exciting last decade of flavodoxin research, in which the folding pathway, the structure and stability of the apoprotein, the mechanism of FMN recognition, the interactions that stabilize the functional complex and tailor the redox potentials, and many details of the binding and electron transfer to partner proteins have been revealed.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2006
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain.
Ferric uptake regulator (Fur) proteins are widely recognized as repressors that in many prokaryotes regulate a large number of genes involved in iron homeostasis and oxidative stress response. In our study, we were able to identify the complete sequence of the fur gene from Microcystis aeruginosa using inverse-polymerase chain reaction. DNA sequence analysis confirmed the presence of a 183 amino-acid open reading frame that showed high identity with Fur proteins reported for cyanobacteria.
View Article and Find Full Text PDFProteins
May 2006
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias & Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain.
Flavodoxins are useful models to investigate protein/cofactor interactions. The binding energy of the apoflavodoxin-FMN complex is high and therefore the holoflavodoxin is expected to be more stable than the apoprotein. This expectation has been challenged by reports on the stability of Desulfovibrio desulfuricans flavodoxin indicating that FMN binds to the unfolded polypeptide with similar affinity as to the native state, thus causing no net effect on protein stability.
View Article and Find Full Text PDFJ Mol Biol
February 2006
Dep. Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Biocomputation and Complex Systems Physics Institute-BIFI, University of Zaragoza, Spain.
The apoflavodoxin fragment comprising residues 1-149 that can be obtained by chemical cleavage of the C-terminal alpha-helix of the full-length protein is known to populate a molten globule conformation that displays a cooperative behaviour and experiences two-state urea and thermal denaturation. Here, we have used a recombinant form of this fragment to investigate molten globule energetics and to derive structural information by equilibrium Phi-analysis. We have characterized 15 mutant fragments designed to probe the persistence of native interactions in the molten globule and compared their conformational stability to that of the equivalent full-length apoflavodoxin mutants.
View Article and Find Full Text PDFHelicobacter pylori flavodoxin is the electronic acceptor of the pyruvate-oxidoreductase complex (POR) that catalyzes pyruvate oxidative decarboxilation. Inactivation of this metabolic route precludes bacterial survival. Because flavodoxin is not present in the human host, substances interfering electronic transport from POR might be well suited for eradication therapies against the bacterium.
View Article and Find Full Text PDFBiophys J
February 2005
Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain.
The contribution of a specific hydrogen bond in apoflavodoxin to protein stability is investigated by combining theory, experiment and simulation. Although hydrogen bonds are major determinants of protein structure and function, their contribution to protein stability is still unclear and widely debated. The best method so far devised to estimate the contribution of side-chain interactions to protein stability is double mutant cycle analysis, but the interaction energies so derived are not identical to incremental binding energies (the energies quantifying net contributions of two interacting groups to protein stability).
View Article and Find Full Text PDFJ Mol Biol
November 2004
Biocomputation and Complex Systems Physics Institute and Department Bioquímica y Biología Molecular y Celular, Fac. Ciencias, University Zaragoza, 50009 Zaragoza, Spain.
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates.
View Article and Find Full Text PDFJ Mol Biol
November 2004
Biocomputation and Complex Systems Physics Institute, University of Zaragoza, 50009 Zaragoza, Spain.
The vast majority of our knowledge on protein stability arises from the study of simple two-state models. However, proteins displaying equilibrium intermediates under certain conditions abound and it is unclear whether the energetics of native/intermediate equilibria is well represented in current knowledge. We consider here that the overall conformational stability of three-state proteins is made of a "relevant" term and a "residual" one, corresponding to the free energy differences of the native to intermediate (N-to-I) and intermediate to denatured (I-to-D) equilibria, respectively.
View Article and Find Full Text PDFJ Biol Chem
November 2004
Biocomputation and Complex Systems Physics Institute, Zaragoza University, Zaragoza, Spain.
Flavodoxins are classified in two groups according to the presence or absence of a approximately 20-residue loop of unknown function. In the accompanying paper (36), we have shown that the differentiating loop from the long-chain Anabaena PCC 7119 flavodoxin is a peripheral structural element that can be removed without preventing the proper folding of the apoprotein. Here we investigate the role played by the loop in the stability and folding mechanism of flavodoxin by comparing the equilibrium and kinetic behavior of the full-length protein with that of loop-lacking, shortened variants.
View Article and Find Full Text PDFJ Biol Chem
November 2004
Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain.
Flavodoxins are well known one-domain alpha/beta electron-transfer proteins that, according to the presence or absence of a approximately 20-residue loop splitting the fifth beta-strand of the central beta-sheet, have been classified in two groups: long and short-chain flavodoxins, respectively. Although the flavodoxins have been extensively used as models to study electron transfer, ligand binding, protein stability and folding issues, the role of the loop has not been investigated. We have constructed two shortened versions of the long-chain Anabaena flavodoxin in which the split beta-strand has been spliced to remove the original loop.
View Article and Find Full Text PDFBiochemistry
May 2004
Departamento de Bioquímica y Biología Molecular y Celular and Biocomputation and Complex Systems Physics Institute, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners.
View Article and Find Full Text PDFJ Biol Chem
June 2003
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza 50009-Zaragoza, Madrid, Spain.
Molecular recognition begins when two molecules approach and establish interactions of certain strength. The mechanisms of molecular recognition reactions between biological molecules are not well known, and few systems have been analyzed in detail. We investigate here the reaction between an apoprotein and its physiological cofactor (apoflavodoxin and flavin mononucleotide) that binds reversibly to form a non-covalent complex (flavodoxin) involved in electron transfer reactions.
View Article and Find Full Text PDFFEBS Lett
March 2003
Departamento de Bioquímica y Biología Molecular y Celular and Biocomputation and Complex Systems Physics Institute, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Pepsin is an aspartic protease that acts in food digestion in the mammal stomach. An optimal pH of around 2 allows pepsin to operate in its natural acidic environment, while at neutral pH the protein is denatured. Although the pH dependence of pepsin activity has been widely investigated since the 40s, a renewed interest in this protein has been fueled by its homology to the HIV and other aspartic proteases.
View Article and Find Full Text PDF