1,048 results match your criteria: "BioFrontiers Institute[Affiliation]"
bioRxiv
January 2025
Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA.
CDK7 regulates RNA polymerase II (RNAPII) initiation, elongation, and termination through incompletely understood mechanisms. Because contaminating kinases precluded CDK7 analysis with nuclear extracts, we completed biochemical assays with purified factors. Reconstitution of RNAPII transcription initiation showed CDK7 inhibition slowed and/or paused RNAPII promoter-proximal transcription, which reduced re-initiation.
View Article and Find Full Text PDFPLoS One
January 2025
SLAC National Accelerator Laboratory, Stanford University, Stanford, California, United States of America.
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFCell Syst
January 2025
Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:
The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Biochemistry, University of Colorado, Boulder, CO, USA.
Cajal bodies are essential sites for the biogenesis of small nuclear and nucleolar ribonucleoproteins. In this issue, Courvan and Parker discuss new work from Neugebauer and colleagues (https://doi.org/10.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
Targeted kinase inhibitors are well known for their promiscuity and off-target effects. Herein, we define an off-target effect in which several clinical BRAF inhibitors, including the widely used dabrafenib and encorafenib, interact directly with GCN2 to activate the Integrated Stress Response and ATF4. Blocking this off-target effect by co-drugging with a GCN2 inhibitor in A375 melanoma cells causes enhancement rather than suppression of cancer cell outgrowth, suggesting that the off-target activation of GCN2 is detrimental to these cells.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
Immune systems must rapidly sense viral infections to initiate antiviral signaling and protect the host. Bacteria encode >100 distinct viral (phage) defense systems and each has evolved to sense crucial components or activities associated with the viral lifecycle. Here we used a high-throughput AlphaFold-multimer screen to discover that a bacterial NLR-related protein directly senses multiple phage proteins, thereby limiting immune evasion.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Department of Biochemistry, University of Colorado Boulder CO 80309-0596 USA +1 303 492 5894 +1 303 735 2159 +1 303 492 1945.
Linkers in chemical biology provide more than just connectivity between molecules; their intrinsic properties can be harnessed to enhance the stability and functionality of chemical probes. In this study, we explored the incorporation of a peptide nucleic acid (PNA)-based linker into RNA-targeting probes to improve their affinity and specificity. By integrating a PNA linker into a small molecule probe of the Riboglow platform, we enabled dual binding events: cobalamin (Cbl)-RNA structure-based recognition and sequence-specific PNA-RNA interaction.
View Article and Find Full Text PDFComput Biol Med
December 2024
University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:
Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.
View Article and Find Full Text PDFbioRxiv
December 2024
BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at the single-cell level. However, the identification of individual cells in brightfield images remains a significant challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells in dense colonies due to a lack of contrast between neighboring cells.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, IL, USA; Materials Research Laboratory, University of Illinois Urbana-Champaign, IL, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA.
Pelvic organ prolapse is a debilitating condition that diminishes quality of life, and it has been linked to pregnancy and aging. Injury of the uterosacral ligaments (USLs), which provide apical support to the pelvic organs, is a major cause of uterine prolapse. In this study, we examined the effect of pregnancy and age on the apparent elastic modulus, susceptibility to collagen damage, and extracellular matrix (ECM) composition of the murine USL.
View Article and Find Full Text PDFFront Immunol
December 2024
Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States.
Background: Understanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible.
View Article and Find Full Text PDFCell
December 2024
BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA. Electronic address:
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
December 2024
Bioinspired Interactive Materials and Protocellular Systems Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics and Energy Science, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80918, United States.
Photothermal conversion efficiency (η) plays a crucial role in selecting suitable gold nanoparticles for photothermal therapeutic applications. The photothermal efficiency depends on the material used for the nanoparticles as well as their various parameters, such as size and shape. By maximizing the light-to-heat conversion efficiency (η), one can reduce the concentration of nanoparticle drugs for photothermal cancer treatment and apply lower laser power to irradiate the tumor.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, USA.
Covalent hydrogel networks suffer from a stiffness-toughness conflict, where increased crosslinking density enhances the modulus of the material but also leads to embrittlement and diminished extensibility. Recently, strategies have been developed to form highly entangled hydrogels, colloquially referred to as tanglemers, by optimizing polymerization conditions to maximize the density and length of polymer chains and minimize the crosslinker concentration. It is challenging to assess entanglements in crosslinked networks beyond approximating their theoretical contribution to mechanical properties; thus, in this work, we synthesize and characterize polyacrylamide tanglemers using a photolabile crosslinker, which allows for direct assessment of covalent trapping of entanglements under tension.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany.
Acta Biomater
January 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA. Electronic address:
Quiescent skeletal muscle satellite cells (SCs) located on myofibers activate in response to muscle injury to regenerate muscle; however, identifying the role of specific matrix signals on SC behavior in vivo is difficult. Therefore, we developed a viscoelastic hydrogel with tunable properties to encapsulate myofibers while maintaining stem cell niche polarity and SC-myofiber interactions to investigate how matrix signals, including viscoelasticity and the integrin-binding ligand arginyl-glycyl-aspartic acid (RGD), influence SC behavior during muscle regeneration. Viscoelastic hydrogels support myofiber culture while preserving SC stemness for up to 72 hours post-encapsulation, minimizing myofiber hypercontraction and SC hyperproliferation compared to Matrigel.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA.
bioRxiv
November 2024
Computer Science Department, University of Colorado, Boulder, CO, USA.
Many patients do not experience optimal benefits from medical advances because clinical research does not adequately represent them. While the diversity of biomedical research cohorts is improving, ensuring that individual patients are adequately represented remains challenging. We propose a new approach, GenoSiS, which leverages machine learning-based similarity search to dynamically find patient-matched cohorts across different populations quickly.
View Article and Find Full Text PDFMol Cell
December 2024
Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands. Electronic address:
Adv Healthc Mater
January 2025
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Parkinson's disease is characterized by motor deficits emerging from insufficient dopamine in the striatum after degeneration of dopaminergic neurons and their long-projecting axons comprising the nigrostriatal pathway. To address this, a tissue-engineered nigrostriatal pathway (TE-NSP) featuring a tubular hydrogel with a collagen/laminin core that encases aggregated dopaminergic neurons and their axonal tracts is developed. This engineered microtissue can be implanted to replace neurons and axons with fidelity to the lost pathway and thus may provide dopamine according to feedback from host circuitry.
View Article and Find Full Text PDFJ Virol
November 2024
The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
Polyomaviruses (PyVs) cause diverse diseases in a variety of mammalian hosts. During the life cycle, PyVs recruit nuclear host factors to viral genomes to facilitate replication and transcription. While host factors involved in DNA replication, DNA damage sensing and repair, and cell cycle regulation have been observed to bind PyV DNA, the complete set of viral and host proteins comprising the PyV replisome remains incompletely characterized.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea. Electronic address:
The tumor microenvironment (TME) comprises diverse cell types within an altered extracellular matrix (ECM) and plays a pivotal role in metastasis through intricate cell-cell and cell-ECM interactions. Fibroblasts, as key constituents of the TME, contribute significantly to cancer metastasis through their involvement in matrix deposition and remodeling mechanisms, modulated by their quiescent or activated states. Despite their recognized importance, the precise role of fibroblasts in cancer cell invasion remains incompletely understood.
View Article and Find Full Text PDF