212 results match your criteria: "Beth Israel Deaconess Cancer Center[Affiliation]"

Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis.

J Clin Invest

January 2019

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA.

Recurrent broad-scale heterozygous deletions are frequently observed in human cancer. Here we tested the hypothesis that compound haploinsufficiency of neighboring genes at chromosome 8p promotes tumorigenesis. By targeting the mouse orthologs of human DOK2 and DUSP4 genes, which were co-deleted in approximately half of human lung adenocarcinomas, we found that compound-heterozygous deletion of Dok2 and Dusp4 in mice resulted in lung tumorigenesis with short latency and high incidence, and that their co-deletion synergistically activated MAPK signaling and promoted cell proliferation.

View Article and Find Full Text PDF

Molecular mechanisms linking high body mass index to breast cancer etiology in post-menopausal breast tumor and tumor-adjacent tissues.

Breast Cancer Res Treat

February 2019

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Dana 517B, Boston, MA, 02215, USA.

Purpose: In post-menopausal women, high body mass index (BMI) is an established breast cancer risk factor and is associated with worse breast cancer prognosis. We assessed the associations between BMI and gene expression of both breast tumor and adjacent tissue in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) diseases to help elucidate the mechanisms linking obesity with breast cancer biology in 519 post-menopausal women from the Nurses' Health Study (NHS) and NHSII.

Methods: Differential gene expression was analyzed separately in ER+ and ER- disease both comparing overweight (BMI ≥ 25 to < 30) or obese (BMI ≥ 30) women to women with normal BMI (BMI < 25), and per 5 kg/m increase in BMI.

View Article and Find Full Text PDF

Distinct cytokine profiles in human brains resilient to Alzheimer's pathology.

Neurobiol Dis

January 2019

Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States. Electronic address:

Our group has previously studied the brains of some unique individuals who are able to tolerate robust amounts of Alzheimer's pathological lesions (amyloid plaques and neurofibrillary tangles) without experiencing dementia while alive. These rare resilient cases do not demonstrate the patterns of neuronal/synaptic loss that are normally found in the brains of typical demented Alzheimer's patients. Moreover, they exhibit decreased astrocyte and microglial activation markers GFAP and CD68, suggesting that a suppressed neuroinflammatory response may be implicated in human brain resilience to Alzheimer's pathology.

View Article and Find Full Text PDF

ZBTB7A governs estrogen receptor alpha expression in breast cancer.

J Mol Cell Biol

August 2018

Department of Environmental Health, John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

ZBTB7A, a member of the POZ/BTB and Krüppel (POK) family of transcription factors, has been shown to have a context-dependent role in cancer development and progression. The role of ZBTB7A in estrogen receptor alpha (ERα)-positive breast cancer is largely unknown. Approximately 70% of breast cancers are classified as ERα-positive.

View Article and Find Full Text PDF

The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care.

Front Oncol

August 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

Precision medicine holds real promise for the treatment of cancer. Adapting therapeutic strategies so patients receive individualized treatment protocols, will transform how diseases like cancer are managed. Already, molecular profiling technologies have provided unprecedented capacity to characterize tumors, yet the ability to translate this to actionable outcome in the clinic is limited.

View Article and Find Full Text PDF

The functions and regulation of the PTEN tumour suppressor: new modes and prospects.

Nat Rev Mol Cell Biol

September 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

PTEN is a potent tumour suppressor, and its loss of function is frequently observed in both heritable and sporadic cancers. PTEN has phosphatase-dependent and phosphatase-independent (scaffold) activities in the cell and governs a variety of biological processes, including maintenance of genomic stability, cell survival, migration, proliferation and metabolism. Even a subtle decrease in PTEN levels and activity results in cancer susceptibility and favours tumour progression.

View Article and Find Full Text PDF

An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance.

Cell

April 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines.

View Article and Find Full Text PDF

The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile.

PLoS Biol

March 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America.

Inflammatory bowel disease (IBD) is a chronic condition driven by loss of homeostasis between the mucosal immune system, the commensal gut microbiota, and the intestinal epithelium. Our goal is to understand how these components of the intestinal ecosystem cooperate to control homeostasis. By combining quantitative measures of epithelial hyperplasia and immune infiltration with multivariate analysis of inter- and intracellular signaling, we identified epithelial mammalian target of rapamycin (mTOR) signaling as a potential driver of inflammation in a mouse model of colitis.

View Article and Find Full Text PDF

The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer.

Mol Cancer Res

April 2018

Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada.

The mTOR signaling pathway is a central regulator of protein synthesis and cellular metabolism in response to the availability of energy, nutrients, oxygen, and growth factors. mTOR activation leads to phosphorylation of multiple downstream targets including the eukaryotic initiation factor 4E (eIF4E) binding proteins-1 and -2 (EIF4EBP1/4E-BP1 and EIF4EBP2/4E-BP2). These binding proteins inhibit protein synthesis, but are inactivated by mTOR to stimulate cell growth and metabolism.

View Article and Find Full Text PDF

An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.

Nat Genet

February 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease.

View Article and Find Full Text PDF

Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism.

Nat Commun

January 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.

The mitogen-activated protein kinase (MAPK) pathway is frequently aberrantly activated in advanced cancers, including metastatic prostate cancer (CaP). However, activating mutations or gene rearrangements among MAPK signaling components, such as Ras and Raf, are not always observed in cancers with hyperactivated MAPK. The mechanisms underlying MAPK activation in these cancers remain largely elusive.

View Article and Find Full Text PDF

Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms.

Nat Med

February 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Multiple immune-cell types can infiltrate tumors and promote progression and metastasis through different mechanisms, including immunosuppression. How distinct genetic alterations in tumors affect the composition of the immune landscape is currently unclear. Here, we characterized the immune-cell composition of prostate cancers driven by the loss of the critical tumor suppressor gene Pten, either alone or in combination with the loss of Trp53, Zbtb7a or Pml.

View Article and Find Full Text PDF

A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche.

Nat Commun

January 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.

Disease recurrence after therapy, due to the persistence of resistant leukemic cells, represents a fundamental problem in the treatment of leukemia. Elucidating the mechanisms responsible for the maintenance of leukemic cells, before and after treatment, is therefore critical to identify curative modalities. It has become increasingly clear that cell-autonomous mechanisms are not solely responsible for leukemia maintenance.

View Article and Find Full Text PDF

Immunotherapies for malignant glioma.

Oncogene

March 2018

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Glioblastoma multiforme (GBM) is a highly malignant primary brain cancer with a dreadful overall survival and for which treatment options are limited. Recent breakthroughs in novel immune-related treatment strategies for cancer have spurred interests in usurping the power of the patient's immune system to recognize and eliminate GBM. Here, we discuss the unique properties of GBM's tumor microenvironment, the effects of GBM standard on care therapy on tumor-associated immune cells, and review several approaches aimed at therapeutically targeting the immune system for GBM treatment.

View Article and Find Full Text PDF

Recent clinical trials have demonstrated that the immense majority of acute promyelocytic leukemia (APL) patients can be definitively cured by the combination of two targeted therapies: retinoic acid (RA) and arsenic. Mouse models have provided unexpected insights into the mechanisms involved. Restoration of PML nuclear bodies upon RA- and/or arsenic-initiated PML/RARA degradation is essential, while RA-triggered transcriptional activation is dispensable for APL eradication.

View Article and Find Full Text PDF

A circular twist on microRNA regulation.

Cell Res

December 2017

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

Circular RNAs (circRNAs) are a novel class of RNA whose physiological function has yet to be investigated. A recent publication in Science provides the first evidence of the biological relevance of a circRNA in an in vivo model and unveils an unexpected twist on their crosstalk with miRNAs.

View Article and Find Full Text PDF

Preclinical and Coclinical Studies in Prostate Cancer.

Cold Spring Harb Perspect Med

April 2018

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215.

Men who develop metastatic castration-resistant prostate cancer (mCRPC) will invariably succumb to their disease. Thus there remains a pressing need for preclinical testing of new drugs and drug combinations for late-stage prostate cancer (PCa). Insights from the mCRPC genomic landscape have revealed that, in addition to sustained androgen receptor (AR) signaling, there are other actionable molecular alterations and distinct molecular subclasses of PCa; however, the rate at which this knowledge translates into patient care via current preclinical testing is painfully slow and inefficient.

View Article and Find Full Text PDF

Lactate dehydrogenase activity drives hair follicle stem cell activation.

Nat Cell Biol

September 2017

Department of Molecular Cell and Developmental Biology, UCLA, 90095, USA.

Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) play a vital role in regulating cellular processes, including the tumor suppressor gene PTEN, with their activity influenced by competing endogenous RNAs (ceRNAs).
  • The study focuses on understanding the sequence features that allow transcripts to function as effective ceRNAs, using data from PAR-CLIP experiments and RNA-Seq to analyze how miRNAs interact with PTEN.
  • By identifying and validating potential ceRNAs like TNRC6B in prostate cancer cell lines, the researchers aim to build a predictive model for ceRNA networks, enhancing our understanding of cancer-related pathways.
View Article and Find Full Text PDF

Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors.

Adv Anat Pathol

November 2017

Departments of *Pathology §§§Medical Oncology, Peter MacCallum Cancer Centre, Melbourne †The Sir Peter MacCallum Department of Oncology Departments of **Pathology ∥∥Medicine, University of Melbourne ¶¶Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville #Department of Anatomical Pathology, St Vincent's Hospital Melbourne, Fitzroy ††Department of Medical Oncology, Austin Health ‡‡Olivia Newton-John Cancer Research Institute, Heidelberg §§School of Cancer Medicine, La Trobe University, Bundoora §§§§§Centre for Clinical Research and School of Medicine, The University of Queensland ∥∥∥∥∥Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane §§§§§§§§§§The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst ∥∥∥∥∥∥∥∥∥∥Australian Clinical Labs, Bella Vista ‡‡‡‡‡‡‡‡‡‡‡‡Directorate of Surgical Pathology, SA Pathology §§§§§§§§§§§§Discipline of Medicine, Adelaide University, Adelaide, Australia ***********Department of Surgical Oncology, Netherlands Cancer Institute †††††††††††††Department of Pathology ##Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands ###Université Paris-Est ****INSERM, UMR 955 ††††Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil ∥∥∥∥∥∥∥∥∥Service de Biostatistique et d'Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay ¶¶¶¶¶¶¶¶¶¶INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif ##########Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre †††††††Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre ‡‡‡‡‡‡‡University of Auvergne UMR1240, Clermont-Ferrand, France ‡‡‡‡Department of Medicine, Clinical Division of Oncology §§§§Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna ††††††††††††††Institute of Pathology, Medical University of Graz, Austria ∥∥∥∥European Institute of Oncology ¶¶¶¶School of Medicine ######Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan ¶¶¶¶¶¶¶¶¶¶¶¶¶Department of Surgery, Oncology and Gastroenterology, University of Padova #############Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy †††††Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona †††††††††††Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain §Department of Pathology and TCRU, GZA ¶¶¶Department of Pathology, GZA Ziekenhuizen, Antwerp ∥Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven ‡‡‡‡‡‡‡‡‡‡‡Department of Pathology, University Hospital Leuven, Leuven, Belgium ¶Department of Pathology, AZ Klina, Brasschaat ††††††Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk ∥∥∥Molecular Immunology Unit ‡‡‡‡‡‡Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles ‡Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet **************European Organisation for Research and Treatment of Cancer (EORTC) Headquarters *******Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium §§§§§§§Department of Surgery, Kansai Medical School, Hirakata, Japan #######Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea ∥∥∥∥∥∥∥∥Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center ¶¶¶¶¶¶¶¶Institute of Oncology, Gliwice Branch, Gliwice, Poland ‡‡‡‡‡‡‡‡‡‡‡‡‡‡Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg †††††††††Institute of Pathology, Charité Universitätsmedizin Berlin ‡‡‡‡‡‡‡‡‡VMscope GmbH, Berlin ¶¶¶¶¶¶¶¶¶German Breast Group GmbH, Neu-Isenburg, Germany **********Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency ††††††††††Department of Biochemistry and Microbiology, University of Victoria, Victoria Departments of ‡‡‡‡‡‡‡‡‡‡Medical Genetics #########Pathology and Laboratory Medicine ¶¶¶¶¶¶¶¶¶¶¶Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC ###########Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada §§§§§§§§§§§Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar ‡‡‡‡‡‡‡‡Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center §§§§§§§§Warren Alpert Medical School of Brown University, Providence ¶¶¶¶¶National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, PA †††Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Departments of ‡‡‡Pathology, Microbiology and Immunology ########Department of Medicine, Vanderbilt University Medical Centre *********Vanderbilt Ingram Cancer Center, Nashville §§§§§§§§§Department of Pathology, Yale University School of Medicine, New Haven ∥∥∥∥∥∥∥∥∥∥∥Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine ∥∥∥∥∥∥∥Montefiore Medical Center ¶¶¶¶¶¶¶The Albert Einstein College of Medicine, Bronx, NY ********Department of Pathology, Brigham and Women's Hospital #####Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center ******Harvard Medical School ¶¶¶¶¶¶¶¶¶¶¶¶Division of Hematology-Oncology, Beth Israel Deaconess Medical Center ††††††††Department of Cancer Biology ‡‡‡‡‡‡‡‡‡‡‡‡‡Dana-Farber Cancer Institute, Boston, MA ∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO ‡‡‡‡‡Department of Cancer Biology, Mayo Clinic, Jacksonville, FL ∥∥∥∥∥∥Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN ¶¶¶¶¶¶Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA ††††††††††††Department of Pathology, New York University Langone Medical Centre ############New York University Medical School *************Perlmutter Cancer Center §§§§§§§§§§§§§Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University ***************Department of Pathology, Memorial Sloan-Kettering Cancer Center ####Departments of Radiation Oncology and Pathology, Weill Cornell Medicine, New York, NY *****Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX ∥∥∥∥∥∥∥∥∥∥∥∥Pathology Department, Stanford University Medical Centre, Stanford ∥∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Pathology, Stanford University, Palo Alto ***Department of Pathology, School of Medicine, University of California, San Diego §§§§§§§§§§§§§§Research Pathology, Genentech Inc., South San Francisco, CA *************Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda ¶¶¶¶¶¶¶¶¶¶¶¶¶¶Translational Sciences, MedImmune, Gaithersberg, MD §§§§§§Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover ##############Translational Medicine, Merck & Co. Inc., Kenilworth, NJ.

Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma.

View Article and Find Full Text PDF

Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research.

Adv Anat Pathol

September 2017

Departments of *Pathology §§§Medical Oncology, Peter MacCallum Cancer Centre, Melbourne †The Sir Peter MacCallum Department of Oncology Departments of **Pathology ∥∥Medicine, University of Melbourne ¶¶Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville #Department of Anatomical Pathology, St Vincent's Hospital Melbourne, Fitzroy ††Department of Medical Oncology, Austin Health ‡‡Olivia Newton-John Cancer Research Institute, Heidelberg §§School of Cancer Medicine, La Trobe University, Bundoora §§§§§Centre for Clinical Research and School of Medicine, The University of Queensland ∥∥∥∥∥Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane §§§§§§§§§§The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst ∥∥∥∥∥∥∥∥∥∥Australian Clinical Labs, Bella Vista ‡‡‡‡‡‡‡‡‡‡‡‡Directorate of Surgical Pathology, SA Pathology §§§§§§§§§§§§Discipline of Medicine, Adelaide University, Adelaide, Australia ***********Department of Surgical Oncology, Netherlands Cancer Institute †††††††††††††Department of Pathology ##Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands ###Université Paris-Est ****INSERM, UMR 955 ††††Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil ∥∥∥∥∥∥∥∥∥Service de Biostatistique et d'Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay ¶¶¶¶¶¶¶¶¶¶INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif ##########Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre †††††††Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre ‡‡‡‡‡‡‡University of Auvergne UMR1240, Clermont-Ferrand, France ‡‡‡‡Department of Medicine, Clinical Division of Oncology §§§§Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna ††††††††††††††Institute of Pathology, Medical University of Graz, Austria ∥∥∥∥European Institute of Oncology ¶¶¶¶School of Medicine ######Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan ¶¶¶¶¶¶¶¶¶¶¶¶¶Department of Surgery, Oncology and Gastroenterology, University of Padova #############Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy †††††Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona †††††††††††Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain §Department of Pathology and TCRU, GZA ¶¶¶Department of Pathology, GZA Ziekenhuizen, Antwerp ∥Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven ‡‡‡‡‡‡‡‡‡‡‡Department of Pathology, University Hospital Leuven, Leuven, Belgium ¶Department of Pathology, AZ Klina, Brasschaat ††††††Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk ∥∥∥Molecular Immunology Unit ‡‡‡‡‡‡Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles ‡Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet **************European Organisation for Research and Treatment of Cancer (EORTC) Headquarters *******Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium §§§§§§§Department of Surgery, Kansai Medical School, Hirakata, Japan #######Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea ∥∥∥∥∥∥∥∥Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center ¶¶¶¶¶¶¶¶Institute of Oncology, Gliwice Branch, Gliwice, Poland ‡‡‡‡‡‡‡‡‡‡‡‡‡‡Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg †††††††††Institute of Pathology, Charité Universitätsmedizin Berlin ‡‡‡‡‡‡‡‡‡VMscope GmbH, Berlin ¶¶¶¶¶¶¶¶¶German Breast Group GmbH, Neu-Isenburg, Germany **********Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency ††††††††††Department of Biochemistry and Microbiology, University of Victoria, Victoria Departments of ‡‡‡‡‡‡‡‡‡‡Medical Genetics #########Pathology and Laboratory Medicine ¶¶¶¶¶¶¶¶¶¶¶Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC ###########Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada §§§§§§§§§§§Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar ‡‡‡‡‡‡‡‡Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center §§§§§§§§Warren Alpert Medical School of Brown University, Providence ¶¶¶¶¶National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, PA †††Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Departments of ‡‡‡Pathology, Microbiology and Immunology ########Department of Medicine, Vanderbilt University Medical Centre *********Vanderbilt Ingram Cancer Center, Nashville §§§§§§§§§Department of Pathology, Yale University School of Medicine, New Haven ∥∥∥∥∥∥∥∥∥∥∥Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine ∥∥∥∥∥∥∥Montefiore Medical Center ¶¶¶¶¶¶¶The Albert Einstein College of Medicine, Bronx, NY ********Department of Pathology, Brigham and Women's Hospital #####Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center ******Harvard Medical School ¶¶¶¶¶¶¶¶¶¶¶¶Division of Hematology-Oncology, Beth Israel Deaconess Medical Center ††††††††Department of Cancer Biology ‡‡‡‡‡‡‡‡‡‡‡‡‡Dana-Farber Cancer Institute, Boston, MA ∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO ‡‡‡‡‡Department of Cancer Biology, Mayo Clinic, Jacksonville, FL ∥∥∥∥∥∥Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN ¶¶¶¶¶¶Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA ††††††††††††Department of Pathology, New York University Langone Medical Centre ############New York University Medical School *************Perlmutter Cancer Center §§§§§§§§§§§§§Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University ***************Department of Pathology, Memorial Sloan-Kettering Cancer Center ####Departments of Radiation Oncology and Pathology, Weill Cornell Medicine, New York, NY *****Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX ∥∥∥∥∥∥∥∥∥∥∥∥Pathology Department, Stanford University Medical Centre, Stanford ∥∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Pathology, Stanford University, Palo Alto ***Department of Pathology, School of Medicine, University of California, San Diego §§§§§§§§§§§§§§Research Pathology, Genentech Inc., South San Francisco, CA *************Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda ¶¶¶¶¶¶¶¶¶¶¶¶¶¶Translational Sciences, MedImmune, Gaithersberg, MD §§§§§§Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover ##############Translational Medicine, Merck & Co. Inc., Kenilworth, NJ.

Assessment of tumor-infiltrating lymphocytes (TILs) in histopathologic specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible, and reliable immunooncology biomarkers is clear.

View Article and Find Full Text PDF

Hodgkin's lymphoma (HL) is highly curable with first-line therapy. However, a minority of patients present with refractory disease or experience relapse after completion of frontline treatment. These patients are treated with salvage chemotherapy followed by autologous stem cell transplantation (ASCT), which remains the standard of care with curative potential for refractory or relapsed HL.

View Article and Find Full Text PDF

A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant Cells.

Cell Rep

July 2017

Howard Hughes Medical Institute, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; Program in Virology, Harvard University Medical School, Boston, MA 02215, USA. Electronic address:

Activating mutations in the KRAS oncogene are highly prevalent in tumors, especially those of the colon, lung, and pancreas. To better understand the genetic dependencies that K-Ras mutant cells rely upon for their growth, we employed whole-genome CRISPR loss-of-function screens in two isogenic pairs of cell lines. Since loss of essential genes is uniformly toxic in CRISPR-based screens, we also developed a small hairpin RNA (shRNA) library targeting essential genes.

View Article and Find Full Text PDF

The use of PARP inhibitors in combination with radiotherapy is a promising strategy to locally enhance DNA damage in tumors. Here we show that radiation-resistant cells and tumors derived from a -deficient mouse model of advanced prostate cancer are rendered radiation sensitive following treatment with NanoOlaparib, a lipid-based injectable nanoformulation of olaparib. This enhancement in radiosensitivity is accompanied by radiation dose-dependent changes in γ-H2AX expression and is specific to NanoOlaparib alone.

View Article and Find Full Text PDF

Host immunity provides wide spectrum protection that serves to eradicate pathogens and cancer cells, while maintaining self-tolerance and immunological homeostasis. Ligation of the T cell receptor (TCR) by antigen activates signaling pathways that coordinately induce aerobic glycolysis, mitochondrial activity, anabolic metabolism, and T effector cell differentiation. Activation of PI3K, Akt, and mTOR triggers the switch to anabolic metabolism by inducing transcription factors such as Myc and HIF1, and the glucose transporter Glut1, which is pivotal for the increase of glucose uptake after T cell activation.

View Article and Find Full Text PDF