845 results match your criteria: "Belarusian State University[Affiliation]"

Introduction: The Chernobyl nuclear accident exposed residents of contaminated territories to substantial quantities of radioiodines and was followed by an increase in thyroid cancer, primarily papillary thyroid cancer (PTC), among exposed children and adolescents. Although thyroid biopsy is an essential component of screening programs following accidental exposure to radioiodines, it is unknown whether the predictive value of biopsy is affected by different levels of environmental exposure.

Methods: A cohort of 11,732 Belarusians aged ≤18 years at the time of the Chernobyl accident with individual thyroid radiation dose estimates was screened at least once 11-22 years later.

View Article and Find Full Text PDF

Red blood cell membrane-coated functionalized Cu-doped metal organic framework nanoformulations as a biomimetic platform for improved chemo-/chemodynamic/photothermal synergistic therapy.

Int J Pharm

March 2024

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China. Electronic address:

Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8).

View Article and Find Full Text PDF

Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation-deaggregation, and in a protein colloid, monomerization-dimerization-aggregation are the main processes when pH is changed.

View Article and Find Full Text PDF

Zn-BTC MOF as Self-Template to Hierarchical ZnS/NiS Heterostructure with Improved Electrochemical Performance for Hybrid Supercapacitor.

Nanomaterials (Basel)

December 2023

Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China.

Zn-BTC (H3BTC refers to 1, 3, 5-benzoic acid) MOF was used as a self-template and a zinc source to prepare ZnS/NiS with a layered heterogeneous structure as a promising electrode material using cation exchange and solid-phase vulcanization processes. The synergistic effect of the two metal sulfides enhances the application of ZnS/NiS. And the high specific surface area and abundant active sites further promote the mass/charge transfer and redox reaction kinetics.

View Article and Find Full Text PDF

Irisin: An unveiled bridge between physical exercise and a healthy brain.

Life Sci

February 2024

Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, United Kingdom; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates. Electronic address:

Aims: Physical exercise has been widely recognized for its positive effects on health and well-being. Recently, the impact of exercise on the nervous system has gained attention, with evidence indicating improvements in attention, memory, neurogenesis, and the release of "happiness hormones." One potential mediator of these benefits is Irisin, a myokine induced by exercise that can cross the blood-brain barrier, reduce neuroinflammation, and counteract neurodegeneration.

View Article and Find Full Text PDF

Alkyltitanium alkoxides generally serve as nucleophiles in reactions with carbonyl compounds and cross-coupling. Their application as reductants is known but remains underdeveloped. Here, we report that irradiation with visible light makes these organometallic compounds efficient reducing agents for the dehalogenation of 1,2- and 1,3-haloalcohols.

View Article and Find Full Text PDF

The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium .

View Article and Find Full Text PDF

Human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated.

View Article and Find Full Text PDF

Cholesterol oxidases (ChOxes) are enzymes that catalyze the oxidation of cholesterol to cholest-4-en-3-one. These enzymes find wide applications across various diagnostic and industrial settings. In addition, as a pathogenic factor of several bacteria, they have significant clinical implications.

View Article and Find Full Text PDF

Screening of broad-spectrum aptamer and development of electrochemical aptasensor for simultaneous detection of penicillin antibiotics in milk.

Talanta

March 2024

College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China. Electronic address:

Penicillin antibiotics (PENs) play an important role in killing pathogenic bacteria. However, the residues of various penicillin antibiotics in milk gradually accumulate in the human body with the increase of milk intake, which causes direct harm to the human body. Aptamers can be used as recognition element of sensors.

View Article and Find Full Text PDF

One of the major challenges in the field of electrochemical energy storage device performance improvement is the development of suitable synthetic materials for electrodes that can provide high power and high energy density features combined with their long-term stability. Here, we have developed a novel two-step approach based on DC glow discharge plasma pre-treatment of a carbon cloth substrate followed by electric field-assisted laser ablation for the synthesis of ZnO/C nanocomposites in a liquid and their simultaneous assembly into hierarchically organized nanostructures onto the pre-processed carbon cloth to produce a supercapacitor electrode. To form such nanostructures, a processed carbon cloth was included in the electrical circuit as a cathode during laser ablation of zinc in water, while a zinc target served as an anode.

View Article and Find Full Text PDF

A new family of ternary nitride materials, Zn(V, Nb, Ta)N monolayers, is predicted. A fabrication mechanism of the Zn(V, Nb, Ta)N monolayers is proposed based on the chemical vapor deposition approach used for their bulk counterparts. The calculations show that these monolayers are thermodynamically and environmentally stable and that the ZnVN monolayer is the most stable and the easiest to synthesize.

View Article and Find Full Text PDF

This study compares the variability of relative response factors (RRFs) using Taguchi's multifactorial analysis for two internal standard (IS) methods in gas chromatography (GC) for quality control of alcoholic products. Methods where either ethanol or pentan-1-ol was used as an IS were compared. For ten volatile substances prescribed by legislation, the RRFs of both methods were compared under 27 different experimental conditions.

View Article and Find Full Text PDF

Combinations of different therapeutic strategies, including chemotherapy (CT), chemodynamic therapy (CDT), and photothermal therapy (PTT), are needed to effectively address evolving drug resistance and the adverse effects of traditional cancer treatment. Herein, a camouflage composite nanoformulation (TCBG@PR), an antitumor agent (tubercidin, Tub) loaded into Cu-doped bioactive glasses (CBGs) and subsequently camouflaged by polydopamine (PDA), and red blood cell membranes (RBCm), was successfully constructed for targeted and synergetic antitumor therapies by combining CT of Tub, CDT of doped copper ions, and PTT of PDA. In addition, the TCBG@PRs composite nanoformulation was camouflaged with a red blood cell membrane (RBCm) to improve biocompatibility, longer blood retention times, and excellent cellular uptake properties.

View Article and Find Full Text PDF

The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm.

View Article and Find Full Text PDF

Multiple underlying images tuned by Mn-doped Zn-Cu-In-S quantum dots.

RSC Adv

November 2023

Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University 308 Ningxia Road Qingdao 266071 People's Republic of China

In this study, ZnS capped Cu-In-S (ZCIS) quantum dots doped with Mn ions are synthesized by a thermal injection method, with luminescence covering almost the entire visible area. The large Stokes shift effectively inhibits the self-absorption effect under luminescence, and the quantum yield of ZCIS quantum dots increased from 38% to 50% after ZnS capping and further to 69% after doping with Mn. First, red-, yellow-, and blue-emitting quantum dots were synthesized and then, polychromatic ensembles were obtained by mixing the trichromatic quantum dots in a different ratio.

View Article and Find Full Text PDF

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility.

View Article and Find Full Text PDF

Raman scattering and spectroscopic ellipsometry studies of SbS and SbSe bulk polycrystals.

Phys Chem Chem Phys

November 2023

Universidad Autónoma de Madrid, Department of Applied Physics, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.

Antimony sulfide (SbS) and antimony selenide (SbSe) compounds have attracted considerable attention for applications in different optoelectronic devices due to their notable optical and electrical properties, and due to the strong anisotropy of these properties along different crystallographic directions. However, the efficient use of these promising compounds still requires significant efforts in characterization of their fundamental properties. In the present study, Raman scattering and spectroscopic ellipsometry were used to investigate the vibrational and optical properties of SbSe and SbS bulk polycrystals grown by the modified Bridgman method.

View Article and Find Full Text PDF

The properties of planar sensors based on tin dioxide and indium oxide used for the determination of acetone vapors have been studied. Sensors based on synthesized SnO and InO nanopowders showed high sensitivity to low concentrations of acetone in a humid environment which simulates human exhalation. The addition of a small amount of Au ions to hydroxide sols significantly increases the threshold sensitivity and the sensor response in a wide range of acetone concentrations.

View Article and Find Full Text PDF

In this work, we present a comprehensive study of the thermodynamic properties of 3-and 4-ethoxyacetanilides. The heat capacities in crystalline, liquid, and supercooled liquid states from 80 to 475 K were obtained using adiabatic, differential scanning (DSC), and fast scanning (FSC) calorimetries. The fusion enthalpies at were combined from DSC measurement results and the literature data.

View Article and Find Full Text PDF

Here we discuss fluorescent properties of graphene quantum dots (GQDs) interacting with the membranes of red blood cells. We report the results of spectroscopic, microscopic, and photon-counting measurements of the GQDs in different surroundings for uncovering specific features of the GQD fluorescence, and describe two observed phenomena important for implementation of the GQDs as fluorescent labels and agents for drug delivery. Firstly, the GQDs can suffer from photodegradation but also can be stabilized in the presence of antioxidants (reduced glutathione, N-acetylcysteine, or 1,4-hydroquinone).

View Article and Find Full Text PDF

Tsuchime-like Aluminum Film to Enhance Absorption in Ultra-Thin Photovoltaic Cells.

Nanomaterials (Basel)

September 2023

Centre for Advances in Reliability and Safety (CAiRS), Unit 1212-1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China.

Ultra-thin solar cells enable materials to be saved, reduce deposition time, and promote carrier collection from materials with short diffusion lengths. However, light absorption efficiency in ultra-thin solar panels remains a limiting factor. Most methods to increase light absorption in ultra-thin solar cells are either technically challenging or costly, given the thinness of the functional layers involved.

View Article and Find Full Text PDF

Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates.

Steroids

December 2023

Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus. Electronic address:

In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM.

View Article and Find Full Text PDF

While several technological solutions are available for older adults to improve their wellbeing and quality of life, little is known about the gaps between the needs, provided solutions, and their adoption from a more pragmatic perspective. This paper reports on reviewing existing technological solutions for older adults, which span the work life, life in the community, and wellbeing at home. We analyzed 50 different solutions to uncover both negative and positive features of these solutions from the perspective of the impact of technology adoption on the quality of life of older adults.

View Article and Find Full Text PDF

The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system.

View Article and Find Full Text PDF