1,343 results match your criteria: "Beijing Aeronautical Science & Technology Research Institute of COMAC[Affiliation]"

Recently, ultrafast laser direct writing has become an effective method for preparing flexible films with micro-nano structures. However, effective control of laser parameters to obtain acceptable micro-nano structures and the effect of micro-nano structure sizes on function of the film remain challenges. Additionally, flexible films with high X-band transmittance are urgently required in aerospace and other fields.

View Article and Find Full Text PDF

The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA).

View Article and Find Full Text PDF

Robot-Assisted Radical Prostatectomy Using the KangDuo Surgical Robot-1500: A Prospective, Multicenter, Single-Arm Clinical Study.

J Endourol

January 2025

Department of Urology, Peking University First Hospital, Institution of Urology, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Peking University, Beijing, China.

The KangDuo Surgical Robot-1500 (KD-SR-1500) is a newly developed surgical robot. We aim to evaluate the feasibility and efficiency of the KD-SR-1500 system for robot-assisted radical prostatectomy (RARP). This prospective, multicenter, single-arm clinical study was conducted among 18-75-year-old patients with suspected T1-2N0M0 prostate cancer scheduled for RARP.

View Article and Find Full Text PDF

Chorus waves are some of the strongest electromagnetic emissions naturally occurring in space and can cause radiation that is hazardous to humans and satellites. Although chorus waves have attracted extreme interest and been intensively studied for decades, their generation and evolution remain highly debated. Here, in contrast to the conventional expectation that chorus waves are governed by planetary magnetic dipolar fields, we report observations of repetitive, rising-tone chorus waves in the terrestrial neutral sheet, where the effects of the magnetic dipole are absent.

View Article and Find Full Text PDF

Background: Human responses and acclimation to the environmental stresses of high altitude and low oxygen are multifaceted and regulated by multiple genes. However, the mechanism of how the body adjusts in a low-oxygen environment is not yet clear.

Results: Hence, we performed RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) to observe the changes of transcriptome and chromatin accessibility in the peripheral blood of eight individuals at 1 h post adaptation in a simulated plateau environment with 3500 m and 4500 m altitude, respectively.

View Article and Find Full Text PDF

Numerous in situ characterization studies have focused on revealing the catalytic mechanisms of single-atom catalysts (SACs), providing a theoretical basis for their rational design. Although research is relatively limited, the stability of SACs under long-term operating conditions is equally important and a prerequisite for their real-world energy applications, such as fuel cells and water electrolyzers. Recently, there has been a rise in in situ characterization studies on the destabilization and regeneration of SACs; however, timely and comprehensive summaries that provide the catalysis community with valuable insights and research directions are still lacking.

View Article and Find Full Text PDF

A new class of higher-order topological insulators that localize energy at arbitrary multiple sites.

Sci Bull (Beijing)

January 2025

Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. Electronic address:

Z-classified topological phases lead to a larger-than-unity number of topological states. However, these multiple topological states are only localized at the corners in nonlocal systems. Here, first, we rigorously prove that the multiple topological states of nonlocal Su-Schrieffer-Heeger (SSH) chains can be inherited and realized by local aperiodic chains with only the nearest couplings.

View Article and Find Full Text PDF

The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.

View Article and Find Full Text PDF

Given the increasing urban population and frenetic mobility, understanding how individuals perceive crowding at large-scale events is crucial for effective crowd management and safety. This study focuses on Tokyo Big Sight in Japan exhibitions to examine participants' perceptions of peak crowding times, locations, and local density, and compare them with the actual measurements. Our methodology integrated questionnaires with beacon tag data.

View Article and Find Full Text PDF

We introduce a circle rolling method (CRM) for boundary extraction from 2D point clouds. The core idea is to create a circle that performs pure rolling on the perimeter of the point cloud to obtain the boundary. For a 3D point cloud, a plane adsorbs points on both sides to create a 2D point cloud, and the CRM is used to extract the boundary points and map them back into space to obtain 3D boundary points.

View Article and Find Full Text PDF

Impact of local government environmental attention on corporate total factor productivity: Evidence from 288 Chinese cities.

J Environ Manage

January 2025

Center for Energy Environmental Management and Decision-Making, China University of Geosciences, Wuhan, 430074, China; School of Economics and Management, China University of Geosciences, Wuhan, 430074, China. Electronic address:

To improve the effectiveness of government environmental attention on resource allocation, this study proposes a measurement framework using text analysis and an unsupervised Word2vec model to quantify local government environmental attention of 288 Chinese cities. We further examine its impact on total factor productivity (TFP) of China's listed firms from 2010 to 2021 using the high-dimensional fixed-effects and panel quantile regression models. The findings show that: (1) Local government environmental attention contributes positively to TFP, with each unit increase raising TFP by approximately 1.

View Article and Find Full Text PDF

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aviation thermal insulation layers due to their high strength-to-weight ratio and excellent high-temperature performance. However, challenges remain regarding their structural integrity and durability under extreme conditions. This study first employed finite element simulation to model the damage evolution of CFRP laminated plates under axial tensile loads and their thermal decomposition behavior in high-temperature environments, providing a theoretical reference.

View Article and Find Full Text PDF

Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

Multiscale Concurrent Topology Optimization and Mechanical Property Analysis of Sandwich Structures.

Materials (Basel)

December 2024

Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China.

Based on the basic theoretical framework of the Bi-directional Evolutionary Structural Optimization method (BESO) and the Solid Isotropic Material with Penalization method (SIMP), this paper presents a multiscale topology optimization method for concurrently optimizing the sandwich structure at the macro level and the core layer at the micro level. The types of optimizations are divided into macro and micro concurrent topology optimization (MM), macro and micro gradient concurrent topology optimization (MMG), and macro and micro layered gradient concurrent topology optimization (MMLG). In order to compare the multiscale optimization method with the traditional macroscopic optimization method, the sandwich simply supported beam is illustrated as a numerical example to demonstrate the functionalities and superiorities of the proposed method.

View Article and Find Full Text PDF

Adapting SAM2 Model from Natural Images for Tooth Segmentation in Dental Panoramic X-Ray Images.

Entropy (Basel)

December 2024

School of Aeronautic Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China.

Dental panoramic X-ray imaging, due to its high cost-effectiveness and low radiation dose, has become a widely used diagnostic tool in dentistry. Accurate tooth segmentation is crucial for lesion analysis and treatment planning, helping dentists to quickly and precisely assess the condition of teeth. However, dental X-ray images often suffer from noise, low contrast, and overlapping anatomical structures, coupled with limited available datasets, leading traditional deep learning models to experience overfitting, which affects generalization ability.

View Article and Find Full Text PDF

Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.

Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.

View Article and Find Full Text PDF

Introduction: This study protocol specifies the primary research line and theoretical framework of the 2023 Survey of the Psychology and Behavior of the Chinese Population. It aims to establish a consistent database of Chinese residents' psychological and behavioral surveys through multi-center and large-sample cross-sectional surveys to provide robust data support for developing research in related fields. It will track the public's physical and psychological health more comprehensively and systematically.

View Article and Find Full Text PDF
Article Synopsis
  • This study used computational fluid dynamics (CFD) to explore how blood flow dynamics in the draining veins of arteriovenous malformations (AVMs) relate to whether they rupture or not.
  • Researchers analyzed data from computed tomography angiography (CTA) and found that while the shape of the veins was similar in ruptured and unruptured cases, ruptured AVMs had significantly higher intravascular pressure and wall shear stress (WSS) in specific vein segments.
  • The findings suggest that ruptured AVMs are associated with higher blood flow velocity and pressure, particularly in the posterior segments of the draining veins, which may help in understanding AVM rupture mechanisms.
View Article and Find Full Text PDF

The physical reprogrammability of metamaterials provides unprecedented opportunities for tailoring changeable mechanical behaviors. It is envisioned that metamaterials can actively, precisely, and rapidly reprogram their performances through digital interfaces toward varying demands. However, on-demand reprogramming by integration of physical and digital merits still remains less explored.

View Article and Find Full Text PDF

The three performance indexes of the space robot, travel time, energy consumption, and smoothness, are the key to its important role in space exploration. Therefore, this paper proposes a multi-objective trajectory planning method for robots. Firstly, the kinematics and dynamics of the Puma560 robot are analyzed to lay the foundation for trajectory planning.

View Article and Find Full Text PDF

Monitoring the dynamic behaviors of self-aligning roller bearings (SABs) is vital to guarantee the stability of various mechanical systems. This study presents a novel self-powered, intelligent, and self-aligning roller bearing (I-SAB) with which to monitor rotational speeds and bias angles; it also has an application in fault diagnosis. The designed I-SAB is compactly embedded with a novel sweep-type triboelectric nanogenerator (TENG).

View Article and Find Full Text PDF

As sensor monitoring technology continues to evolve, structural online monitoring and health management have found numerous applications across various fields. However, challenges remain concerning the real-time diagnosis of structural damage and the accuracy of dynamic reliability predictions. In this paper, a structural online damage identification and dynamic reliability prediction method based on Unscented Kalman Filter (UKF) is presented.

View Article and Find Full Text PDF

The microstructure and residual mechanical properties of several groups of T92/Super304H dissimilar steel welded joints (hereinafter referred to as welded joints) in service for 70,000~85,000 h were analyzed. The results show that the early service history of the welded joint results in the polygonization of the martensite lath and the coarsening of the precipitated phase on the side of T92 steel. In the further creep process, the cavities nucleate along the precipitated phase interface and the triple junction grain boundary.

View Article and Find Full Text PDF

THOR: a TMB heterogeneity-adaptive optimization model predicts immunotherapy response using clonal genomic features in group-structured data.

Brief Bioinform

November 2024

Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning, Nanjing 211106, China.

With the increasing number of indications for immune checkpoint inhibitors in early and advanced cancers, the prospect of a tumor-agnostic biomarker to prioritize patients is compelling. Tumor mutation burden (TMB) is a widely endorsed biomarker that quantifies nonsynonymous mutations within tumor DNA, essential for neoantigen production, which, in turn, correlates with the immune response and guides decision-making. However, the general clinical application of TMB-relying on simple mutational counts targeted at a single endpoint-does not adequately capture the complex clonal structure of tumors nor the multifaceted nature of prognostic indicators.

View Article and Find Full Text PDF